
AD-A216 898

A RAND NOTE

S I..ECTE The RAND-ABELG ProgramrigLanpuago:
JAN 19 190Reference Manual

L -~Norman ZShapiro, H. Edward Hall,
Robertl. Ancerson, Mark Laiasse,
Marrietta S. Gilogly, Robert Weissler

-December 1988

P1ttibution _Uzibnij

1948-198

RAND190018 018

Trhe research described in this report was sponsored by the
Director of Net Assesent, Office of .the Secretmay of Defense
(OSD), under RAND's National Defense Reseaxch Institute, an
OSD-supported Federally Funded Research and Development Cntfer1
Contract No. HDA903-85-C-0030.

The RAND, Publication Series: The Repoit is the principal publication doc-
umenting and transmitting RAND'$ major research findings and final research
r#sults. The RAND Note reports other outputs o0 sponsored research ito:
general distribution. Pubications of The RAND Corporatiol do not neces.
sarily reflect the opiniotis or policies of -the sponsors of RAND research.,

Published'by The RAND Corporation
1700 Main Street, P.O.'Box 2138, Santa Monica', CA 90406-213

A RAND NOTE N-2367-1-NA

The RAND-ABELF Programming Language:
Reference Manual

Norman Z. Shapiro, H. Edward Hall,
Robert H. Anderson, Mark LaCasse,
Marrietta S. Gillogly, Robert Welssler

December 1988

Prepared for
The Director of Net Assessment,
Office of the Secretary of Defense Accesto, For

NTIS CRA&

DTIC 1AG

Unannouricud Q
Jusit1cujtion

By..______ -
Distribution I

Availabtlity Codes
s Avail andlor

SPecidl

A research publication from
The RAND Strategy Assessment Center

41c45-1988

RAND
APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED

- iii -

PREFACE

The RAND-ABELM' was developed at The RAND Corporation, originally

for use in writing complex decision-model "agents" as part of a

knowledge-based simulation for automated war gaming. It was designed

and implemented initially by Norman Z. Shapiro, I. Edward Hall, and Hark

LaCasso. Robert Weisslor has made important subsequent contributions.

RAND-ABEL is an evolving operational language that is now being

used in a number of diverse projects. It will be available in the

public domain. This Note, which updates a 1985 publication, documents

the RAND-ABEL language as it existed in Harch 1988. It is intended

primarily for programmers. It gives a terse but complete description of

the language. It assumes the reader is fluent in at least one high-

level programming language and is familiar with the notation and

concepts used to describe the formal syntax of programming languages.

For background on RAND-ABEL's origin and underlying principles, see:

Shapiro, Norman Z., It. Edward Hall, Robert It. Anderson, and
Mark LaCasse, The RAMD-ABEL'm Programming Language:
History, Rationalo, and Design, The RAND Corporation,
R-3274-NA, August 1985.

Current plans are to complete by the end of 1988 the addition of

several new RAND-ABEL features. These new features will broaden the

scope of problems addressed by RAND-ABEL, and allow for clearer and more

efficient modeling. The features include: sets (with enumerative

values as lngal members), type-unions (with dynamic type assignment and

checking), data structures of arbitrary complexity, and lists (including

a variety of operators for manipulating them). Readers having versions

of RAND-ABEL produced after this manual's publication should check the

relevant on-line documentation to see what additional features their

software supports (see file UPDATES in the main RAND-ABEL source

directory).

'RAND-ABEL is a trademark of The RAND Corporation.

- iv -

This work was conducted by the RAND Strategy Assessment Center and

sponsored by the Director of Not Assessment in the Office of the

Secretary of Defense, under the auspices of RAND's National Defense

Research Institute, a Federally Fuuded Research and Development Center

sponsored by the Office of che Socrot.,ry of Defense.

Inquiries and conments arc welcom Ti,.,y may be sent directly to

the authors or to Dr. Paul K. Davis, Dir.cL'nr of 01he RAND Strategy

Assessment Center.

SUMMARY

This reference manual describes the RAND-ABEL programming language.

In designing the RAND-ABEL language; we determined that

?)RAND-ABEL should be suitable for large, rule-based systems.

- It should lend itself to program development by
multimember programming teams.

- It should be relatively easy to maintain. 2"

-*:RAND-ABEL should be suitable for war gaming and multiscenario
sensitivity analysis.

- Domain-substantive RAND-ABEL rules should be readable by
domain special'sts who are not RAND-ABEL programmers, and
the code should be relatively self-documenting.

- RAND-ABEL should be efficient in execution.3

•RAND-ABEL should be suitablc for use by any of several
governmental gaming and analysis organizations.

- It should be transportable to various computers capable
of hosting the UNIX operating system.

The RAND-ABEL language was designed for the specific requirements

of the RAND Strategy Assessment Center (RSAC). The RSAC has develope a

large system for automated and semlautomated war gaming in which

separate models represent U.S., Soviet, and third-country behavior.
1

RAND-ABEL is a preprocessor for the C programming language under the

UNIX operating system, which makes RAND-ABEL quite portable azross

different computers. RAND-ABEL is very fast in execution time compared

with other languages 9f similar readability. We estimate that C

language programs execute no more than three times faster than

comparable RAND-ABEL programs. (.1

'See Davis and Winnefeld, 1983; Davis, Bennett, and Schwabe, 1988;
Davis, 1988; and Davis and Hall, forthcoming.

- vi -

In the RAND Strategy Assessment System (RSAS) environment,

RAND-ABEL is used with a data dictionary, a data editor, and support for

coroutines. This allows a flexible, hierarchical modeling system,

allowing human teams to replace some of the models. Although designed

for the RSAS, we anticipate that RAND-ABEL will be of interest tor other

applications on UNIX systems requiring d highly readable language, fast

performance, and early discovery of errors (for example, in the design

of large rule-based models and simulations).

Ile RAND-ABEL language provides a number of unique capabilities,

including support for tables within the source code. Tables can be used

as decision tables or to govern an iterative execution. We find that

table statements provide a much more succinct and readable alternative

to long sequences of sentence-like rules typical of rule-based

languages. When used as decision tables, RAND-ABEL tables correspond

closely to the decision trees analysts and reviewers use in working out

a logically complete argument. RAND-ABEL tables have a syntax that is

inherently two dimensional.

RAND-ABEL is a strongly typed language, permitting certain types of

errors in complex programs to be uncovered early. Many of RAND-ABEL's

features are derived from constructs in the C programming language.

- vii -

ACKNOWLEDGMENTS

Jean LaCasse tested the RAND-ABEL Translator's robustnes. and

diagnostics at various stages, helped debug some of the code, and wrote

preliminary documentation.

Several other members of the RAND Strategy Assessment Center (RSAC)

staff have made valuable suggestions regarding RAND-ABEL syntsx and

requisite features. These include Steven Pankes, Arthur Bullock, Paul

Davis, William Jones, Christe Hcteonomy, Ross Quinlan, and Herbert Shukiar.

We especially wish to acknowledge strong and continuing support for

the development of the RAND-ABEL language by Paul Davis and Herbert

Shukiar of RSAC. Paul's stubborn refusal to be satisfied with anything

less than our best effort at meeting RSAC's real needs, Ilfrb's effective

and knowledgeable guidance, and their allocation of resources to RAND-ADEL

when its future was uncharted are responsible for RAND-ABEL's success to

date.

CONTENTS

FACE 1

SU;' 3 ARY v

ACXi<r " LEIVG'iE.N-TS ... vii

Section
1. INMT ODU:CTIO. ... I

Not ational Conventions 5

II. N-AES, IDENTIFIERS, WHITE SPACE, AND COMMENTS 7
Names and Identifiers 7
A Note on White Space and Comments 9

I1 . DATA TYPES ... 11
Basic Data Types ii
Enumorated Data Types 13

IV. VALUES, E":PRESSIONS, AND OPERATORS 16
Values and Simple Expressions 16
Operators .. 20

V. DECLARATIONS ... 28
To Declare a Variable 28
1o Declare an A ray 29
To Declare a Function 30

VI. FUNCTIONS .. 33
Defining a Function 33
Named Function Calls and Function Invocations 34

VII. RAND-ABEL STATEMENTS 37
Assignment ... 37
Conditional Execution 39
Repetitive Execution 40
Table Statement...................................... 43
Functions: Invoking and Exiting 50
Irp-it/Output ... 52
Compound and Null Statements 59

VIII. META-STATEHENTS .. 62
#define .. 62
Include .. 63
Debugging: Trace and Untrace 64

-X -

IX. DATA DICTIONARY 65
Defining Declarations 67
Identifying Declarntions 72
Informative Declarations 72

Creaing and Reooving Doefault Declarations 73
Exa~pb of a Data Dictionary Declaration Section 75

X. COPROCESSES 76
Creating a Coprocass 76
Putting a Procoss to Sleep 76
Termint ing a Coprozess 77
Reserved Coprocess Variables: Self and Parent 77
Rules for tlh Use of Coprocesses 77

XI. TOP-LEVEL RAND-AUEL DECLARATIONS, DEFINITIONS, AND
STATEMENTS 79

APPENDIXES
A. LOCAL SUPPORT ENVIRON*1EN'T FOR RAND-ABE $I
B. QUICK REFERENCE GUIDE TO THE RAND-ABEL LANGUAGE 87

INDEX ... 105

BIBLIOGRAPHY .. 113

I, INTRODUCTION

RAND-ABEL is a computer programming language implemented on the

MIX' operating system. A program called the "RAND-ABEL Translator"

compiles RAND-ABEL statements into a C program (Kernighan and Richie,

1978), which is in turn compiled and run.

RAND-ABEL was developed at the RAND Strategy Assessment Canter

(RSAC), to be used in tha development of complex models. Six primary

design goals guided the dovolopment of RAND-ABEL. RAND-ABEL is intended

to be:

Reasonably self-documenting. The RAND-ABEL code, by itself,
should convey the meaning of a program.

Understandable by English speakers familiar with the subject
matter. Readers of the program should not need detailed
programming knowledge to comprehend the program.

Reasonably easy to learn and use by individuals with good
analytic capability and modest programming skills. Analysts
and application specialists with only some prior experience in
a high-level programming language, such as FORTRAN, should be
able to program effectively in RAND-ABEL without extensive
training and study.

Rapid in execution. Since RAND-ABEL was specially designed for
building rule-based programs wiih many qualitative variables,
it is important that these large programs be able to execute
rapidly and efficiently.

Portable across different types of computer hardware.
RAND-ABEL and systems developed in it should not be unique to a
single computer or manuiacturer's computers but rather be
portable across a range of minicomputers and powerful
microcomputere.

Supportive of specialized needs of the RAND Strategy Assessment
System (RSAS), such as coroutines anI tabular data, and well-
suited to the creation of complex simulations by groups of
developers.

'UNIX is a trademark of AT&T Bell Laboratories.

-2-

Although reading and changing RAND-ABEL programs is relatively a*s7

and within the capabilities of marry analysts who know some other

computer language, some RAND-ABEL programming, such as changing the RSAS

Data Dictionary, requires relatively high levels of programming skill

and knowledge. RAND-ABEL is not unique in requiring high skill levels

in order to exploit the full capabilities of the lang'age; however, its

friendly readability can give an erroneous impression regarding

writability.

Prior to the development of RAND-ABEL, the ROUND Strategy Assessment

Center used the ROSIE3 l~inguago (Fain et al., 1981) for programming the

Scenario Agent. The ROSIE program representing the Scenario Agent of

the Mark II RSAC system is document-d in Schwabe and Jamison (1982). We

found that ROSIE was too slow for our future needs, which included

operating large-scale simulations in a matter of minutes. Also, we

sought special features such as decision tables that were not likely to

be available in ROSIE. Therefore, RAND-ABEL was developed as a separate

language.' Nevertheless, much of the form and style of the statements in

RAND-ABEL deoves from its ROSIE heritage. Because analysts were using

only a portion of the features of ROSIE, it was possible to design

RAND-ABEL as a simpler lnguage.

The goals of speed in execution and portability were achieved by

writing a RAND-ABEL compiler (called the RAND-ABEL Translator) that

translates RAND-ABEL statements into statements in the C language.

Because C and its host operating system, UNIX, are available on many

different computers, RAND-ABEL is similarly portable. In addition,

efficient C language compilers are available, thereby permitting the

efficient compilation of RAND-ABEL statements through this two-step

compilation process. As a result, RAND-ABEL can be used on any computer

running the UNIX 4.2bsd operating system and having a C language

compiler. Moving RAND-ABEL to later versions of AT&T's UNIX system

should bG trivial.

2ROSIE is a registered trademark of The RAND Corporation.
3The history, rationale, and design of RAND-ABEL is described in

Shapiro et al., 3985.

-3-

RAND-ABEL has proven to be exceptionally useful for knowledge-

based modeling and hos been used to generate approximately 250,000 lines

of code representing models dealing with political-military

decisionmnking, situation assessment, command-control, and adjudication

of results of force interactions. It should be noted, however, that

RAND-ABEL is a procedural language and does not have an "inference

.qngine." It is therefore quite suitable for representing knowledge of

.. te form If <situation> Then <action>, but it does not have the

particular inferencing capabilities of, for example, LISP, PROLOG, and

ROSIE.

RAND-ABEL is a strongly typed lang*Iage; that is, the properties of

all identifiers are declared before they are used. Tih RAND-ABEL

compiler uses these properties to test the validity of RAND-ABEL

statements so that certain types of errors (particularly control-relatoed

and data-related oerors) may be caught at the earliest possible time.

The RAND-ABEL language contains a numbar of novel featu: .,s.

Perhaps the most novel construction in RAND-ABEL is the tcble statement,

described in detail in Sec. VII of this manual. The following is valid

RAND-ABEL code. (In this and other examples within this manual,

RAND-ABEL keywords are printed in boldface to distinguish them from

identifiers, constants, and comments chosen by the user to describe a

particular application. Comments appear within square brackets.)

Table Deploy

[This table orders deployment of forces]

qty 0-% unit-type unit-owner to-area

20 % Troops Denmark CEur-res
20 % Troops Netherlands CEur-res
20 % Troops FRG CEur-res

1 0 Troops UK CEur-res

All RAND-ABEL tables consist of column headings followed by rows

containing data. In this example, there are five columns. The meaning

of the top row of the table, as defined by the Deploy function, orders

20 percent of the troops "owned by" Denmark to deploy to CEur-res

-4-

(Central European theater reserves). The table calls the Deploy

function four times (once for each row of data) with five parameters

(corresponding to the entry in each column of the table). On the fourth

call, one division of British troops (the "0" means number, rather than

percent) are deployed.

The table statement is a powerful device, capable of both defining

iterative processes and creating decision tables. Its syntax is fully

two dimensional. A function call or RAND-ABEL statement (possibly a

compound statement) occurring immediately after the table keyword is

called once for each row in the table, with the table's column headings

being parsed and matched with function parameters or variables In the

statement. The table statement was developed because tables of

information are commonly used by many types of planners and analysts.

A second noteworthy feature of RAND-ABEL is "declaration by

example." All identifiers are declared by giving examples of their use,

usually by an assignment statement such as:

Declare message by example: Let message be "I have Checkmate".

or more briefly

Declare message: Let message be "I have Checkmate".

which declares the variable "message" to be a character string. In this

manner, the data type associated with an identifier is declared without

requiring the use of a whole vocabulary (e.g., integer, real, character

string, |oolean, process, enumerated variable, array) that may not be

meaningful to analysts who are not professional programmers.

Furthermore, it is especially useful in rule-based systems with many ad

hoc data types that otherwise would require names for strong typing

(i.e., the data types to which enumerated variables belong).

RAND-ABEL also has a built-in set of functions to handle coroutines

and a "data dictionary" to coordinate external data references among

program modules being developed independently. These language features

are discussed in Secs. IX and X of this manual.

-5-

NOTATIONAL CONVENTIONS

This manual presents the form and content of the RAND-ABEL

programming language. In doing so, it must use a set of stylistic

conventions to represent RAND-ABEL's form. These conventions must not

be confused with the form of the RAND-ABEL syntax itself. The

conventions used in this document are:

1. The RAND-ABEL language relies on a number 6f special keywords,
or reserved words, which have a particular meaning. Appendix B
contains a complete list of RAND-ABEL keywords. As mentioned
earlier, in this manual RAND-ABEL keywords are printed in
boldface, to distinguish them from other language constructs.
In a RAND-ABEL program, these keywords must be written in lower-
case, with the first letter optionally upper-case. Therefore,
the only two valid ways of writing a keyword are:

Declare, declare

This same case freedom does not extend to RAND-ABEL identifiers
or character strings. lhe variable name "Country" is distinct
from the (dangerously similar) name "country".

2. The syntax of RAND-ABEL is sometimes best described in terms of
a set of syntactic categories, which themselves have a dofined
structure. These syntactic categories are represented by a
word or phrase in italics, like expression. What is allowed in
place of these categories is described in various sections of
this manual. To find the definition of one of these
categories, look under that category in the index to this
manual; it tells on which page that definition occurs. A list
of syntactic categories is given in Appendix B.

3. To represent a set of options, one of which must be chosen, we
use a single-spaced vertical stack of options. For example,

Trace If.
Trace Function.

This notation means that the TRACE statement can take the forms
"Trace If." or "Trace Function.". To represent a continuation
of the previous line, we indent the second part of the
definition. For example,

Declare variable-name:

Let variable-name be expression.

-6-

Let variablo-namo be Idontdfeor constant.
Let variablo-nama be enumerated variabJl.

indicates that the phrase "Let varlabje-nama be" is a required
part of the Declare statement, and that it must be followed by
a representative of one of the three syntactic categories
listed: expression, idencifior constant, or enumearated
variable. One valid form of the Declare sratement is therefore

Declare variablo-nama: Let varitzblo-name be expression.

4. Ellipses (i.e., "three dots" notation) are used to represent a

sequence of zero or more RAND-ABEL constructs. For example,

statemnt . . . sCaoont

means that zero or more sCaemenCs can occur in a sequence. By
extension, if a delimiter is used after the first; occurrence
and before the second occurrence with the three-dot notation in
between, it means zero or more instances of that construct can
occur in sequence, separated from each other by that delimiter.
For example,

means that zero or more RAND-ABEL no.-as can occur, separated by
commas (the delimitoer here). When ONE or more occurrences are
required, the above notation is somctimes used for convenience,
with a no A immediately below the syntax diagram stating that
restriction.

5. The structure representing a particular RAND-ABEL language
category is boxed so that it can be found easily. Rules
specifying various restrictions and notes regarding this
structure then follow. The particular syntactic category being
(perhaps partially) defined is shown within the top bordr~r of
the box. For example:

+-statement -- -- +

If LBoolean-expression Then staemont I

If BooJean-exprossion Then statemenc Else statement I

I I-----------------------

-7-

II. NAMES, IDENTIFIERS, WHITE SPACE, AND COMMENTS

NAMES AND IDENTIFIERS
The entities of a RAND-ABEL program (e.g./variables) have nnmes.

Each is represented by a RAND-ABEL idontifior, which is composed of a

sequence of one or more of the following characters, without intervening

spaces:
upper- and lower-case letters (A-Z, a-z)
digits (0-9)
the hyphen (-) (or its synonym, the underscore ())
tie number or pound sign (0)
the percent sign (%)
the plus sign (+)
the ampersand sign (&)
the slash (/)
the period (.)

Rules:

1. An identifier cannot end with a period.

2. An identifier should not begin, with a hyphen (-), its synonym
underscore (-) or a period (.).

3. An identifier cannot extend over a line of text (i.e., it
cannot contain a carriage-return or line-feed character). It
also cannot extend over a line of text by being hyphenated;
the hyphen is treated just as any other character. (An
identifier used as a column heading in a table statement is an
exception to this rule. See the discussion of the table
statement in Sec. V11.)

4. Upper-case letters are distinct from lower-case letters within
identifiers; for example, the following identifiers represent
different data items:

Country, country, COUNTRY, CounTry

Within RAND we recommend a programming style in which global
variables are capitalized and local variables are not. For
instance, "British-mood" indicates a global variable, while
"british-mood" signifies a local variable. It should be noted
that this is a programming convention, not a requirement of
RAND-ABEL syntax.

-8-

5. A sequence of characters meeting the above restrictions, and
intended as an identifier, must also not be recognizable as
anything else, such as an integer or real number.

There Js no restriction on length, other than the one-line

limitation (Rule 3 above).

11. should be noted that various text formatters in use at RAND and

elsewhere interpret a period (.) in column 1 as a special formatting

instruction, thereby causing problems if that is not intonded. No

RAND-ABEL statement begins with a period, but one could inadvertently

appear in column 1 if an identifier begins with a period and a statement

is continued onto a folloWng line, causing an identifier to appear

first on the succeeding line. Tt is safest not to start any identifier

with a period.

The C compiler generates variables that begin with initial hyphens

(-) and initial underscores (_). To preclude the possibility of

confusion, it is recommended chat RAND-ABEL Identifiers avoid this

usage: i.e., do not begin an identifier with a hyphen or an underscore.

Examples of valid RAND-ABEL identifiers:

country

Order-1VD1- force-assignment

assumptions-re-Europe-On-Call

84flightc-2

An identifier, having the form described above, can also be an

"identifier constant" as a member of the range of an enumerated data

type. See Sec. III for more information on enumerated data types.

In RAND-ABEL variables and functions may be assigned attributes

such as ownership. Variables may be global, owned, or local; functions

may be owned or global. The majority of variables and functions in the

RSAS are owned. Ownership is described in detail in Sec. IX.

-9-

A NOTE ON WHITE SPACE AND COMMENTS

RAND-AbEL statements and definitions consist of a set of words,

some of them reserved keywords, some of them names (of variables,

functions, etc.), and some of them unexecuted noise words or comments,

made up by the program's author. The following rules hold in writing

RAND-ABEL programs. Since RAND-ABEL is built upon the C language, the C

conventions for program form should be followed In case of uncertainty.

Form Rules:

1. One or more spaces separating RAND-ABEL language constructs is
considered to be "white space" that acts as a separator. Any
comment enclosed by square brackets is also considered to be
white space. Exumplos:

Let (the variable) Country be US.
Letithe variable)Country be US.

Both of these statements are equivalent to the statement:

Let Country be US.

White space occurring within a RAND-ABEL table header hes
special meaning; those rules do not strictly apply within it.
Sea the subsection "Table Stetement" in Sec. VII for further
information.

2. Carriage returns or line feeds are equivalent to space
characters in creating white space; they have no other
syntactic or semantic moaning. Examples:

Declare [the function) plan by example:
Let [the] plan of US, (the origirator)

[in) 1984, [the time period)
[within) Europe (the locale)

be Defend-borders.

The above statement is equivalent to the statement:

Declare plan by example:
Let plan of US, 1984, Europe be

Defend-borders.

- 10

Spnces and other characters occurring within a string enclosed

in double quotes (") are taken literally and are not considered

white space as the term is being used in this discussion. For

further information about character strings, see Sec. III or

the syntax of character strings in the C language definition.

Also, spaces are treated specially wthin table headers. So

the discussion of the table statement for further information.

- 11 -

III. DATA TYPES

BASIC DATA TYPES

Thu RAND-ABEL languuge recognizes nine basic data typos. In
addition, the use of enumerated data types and the ability to create

pointers and arrays allow the user to construct an arbitrary number of

additional data types. Every simple variable, value, and expression in

the language is of one of these data typos, either through explicit

declaration or (in the case of expressions) by derivation from the form

of constants and the prior declaration of variables used within them.

The nine basic RAND-ABEL data typos are shown on page 12.

Intege*, real, string, Booloan, process, and stream data types are built

into the RAND-ABEL language. Enumerated data types, pointers, and

arrays are constructed data types. Process and stream data types are
usually hard-wired into RSAS underlying code where casual users do not

encounter them.

Strong Typing

RAND-ABEL is a "strongly typed" language. That is, the data

variables, values3, or expressions on either side of an assignment

statement, or binary operazor, or used in place of a function's formal

parameter, must agree. This strong typing is possible because all

identifiers must be declared explicitly prior to use, thereby

associating the identifier with a data type (or in the case of a

structure or function, a sequence of data types). The RAND-ABEL

transla..or will flag a statement as being in error if there is a

mismatch of data types within the statement. (The only exception to

this statement relates to the integer data type as explained under

"Comparison Operators" in Sec. IV.)

- 12 -

Data Type Description Example(s)

1. Integeri Whole number with + or 1, -3567, 0, +45
- prefix optional (no
intervening space) and no
decimal point explicitly
given.

2. Real Decimal numeric value with 5.34, -.0079, 0.0, 8.
+ or - prefix optional (no 6.02 E 23 (6.02 x 101*23)
intervening space) and with 4 E 3 (4000.0)
decimal point explicitly 4 E -3 (.004)
positioned.

3. String' String of zero or more "Ally is not responsive."
characters delimited by of

quotation marks.
4. Boolean A logical data item Yes, No

that can take on only
one of tie two values:
Yes, No.

5. Enumerated An explicit, finite-ordered Red, dlue, Green
list of values, consisting USA, France, FRG
of RAND-ABEL identifiers.

6. Array A table of values of one or
more dimensions, indexed by
integers and/or enumerated
data type(s).

7. Pointer A variable whose value is
the address of a variable
or function.

8. Process" An identifying number for a
RAND-ABEL coprocoss. Two reserved
RAND-ABEL keywords represent the
current process (Self) and
its parent (Parent).

9. Stream Output file pointers, log-file

'integers are implemented in RAND-ABEL as tie C language data type
"long int", and are therefore subject to C restrictions for that data
type.

'These numbers must have a decimal point contained in them, or use
"E" (exponential) notation to represent a power of 10. If they use "E"
notation, the number following tie "E" must be a whole number. Since
use of the E operator could be construed as part of an identifier (e.g.,
in 4E3 or even 4.OE3), it must be separated from its arguments by white
space as shown in the examples above. Real numbers are implemented in
RAND-ABEL as the C language data type "float", (i.e., single precision
floating-point numbers) and are therefore subject to C restrictions for
that data type.

'A string may be up to 256 charncters in length and may contain
embedded special characters such as carriage returns and line feeds.
These are specified by the special escape sequence backslash (\), such
as \n for line feed (see "Format Specification" in Sec. VII). The
normal syntax and rules for character strings in the C language apply
for character strings in RAND-ABEL.

"How coprocesses are started and manipulated is described in Sec. X.

- 13 -

In fact, the strong typing goes considerably deeper for constructed

data types. Consider the following examples:

" A pointe- is declared to point to an array of real numbers.
The array has two indices: an integer and an enumerated data
type. All assignments of this pointer to other data constructs
must retain all of these characteristics: a two-dimensional
array storing real numbers, indexed by an integer and that same
enumerated data type, respectively.

* A function is declared to return a process as its value and
has threc formal parameters: a Boolean, a character string, and a
pointer to an array having the characteristics given in the
previous example. All calls on this function must meet all
these dat* type constraints, including the correct data types
on the indices and stored values of the array pointed to by the
third parameter.

ENUMERATED DATA TYPES

In addition to the six built-in data types, additional data types

may be constructed by the following mechanisms: enumerated data types,

arrays, and pointers to various data constructs.

Enumerated data types are constructed by definitions of the

following form:

Define Enumeration Type-country: France, Germany.

This defines a -tw data type, Type-country, that can take on

exactly two values: the identifiers France and Germany. These values

will be called "identifier constants" within this document.'

5Definitions of enumerated data types are always made in the Data
Dictionary files. (See Sec. IX.)

Enumerated types are used in declarations' of the form:

Declare country by example: Let country be Type-country.
Declare Moginot-line: Let Haginot-line be Type-country.

- 14 -

These declarations croatu the two distinct variables "country" and

"Maginot-line" that can each take on only the values listed in the

definition of Type-country: either "France" or "Germany". (See Sec. V

for a description of declaration options.) The phrase by example is

optional. It should be noted that a declaration is IOT an assignment

statement. In the above examples, neither variable has any value yet.

Enumerated data types are simply data types that take on an

explicit, finite-ordered list of values. Tite values are simple

RAND-ABEL identifiers. In the above example, because France is listed

first, it can be said to be "less than" Germany. This property can be

used effectively in conditional statements when a specific portion of

the list of the enumerated data type needs to be referenced.

The only way an identifier constant is established is by the

declaration of an enumerated data type, including that identifier

constant in its range (i.e., as part of the specified list). The sot of

valid identifier constants is given in a definition of the form:

Define Enumeration Type-color: Red, Green, Blue.

In this example, "Type-color" is a new data type, and "Red," "Green,"

and "Blue" are the (only) Identifier constants in its range.

There is one reserved enumerated value that is a member of all

enumerated data types, even though it is not explicitly listed. It is

the value Unspecified. Any enumerated data type can take on this value.

The value can be explicitly given to an enumerated type through use of

the keyword Unspecified (or its synonym ",..,) used in place of an

CDeclarations using enumerated data types are usually made in the

Data Dictionary files, unless the variable is a local variable. For
local variables, declarations are made in the relevant RAND-ABEL source
code.

- 15 -

identifier constat in an assignment statement. Note that it is NOT

automatically assigned by RAND-ABEL, however. Enumerated types have NO

value before one is explicitly assignei (i.e., Unspecified is NOT the

default value for enumerated types).

All enumerated data types are distinct from one another.

Therefore, the value of one enumerated data type cannot be assigned to

another (becausu this violates the "strict type checking" rule that only

the same data types may be compared, assigned, or operated on together).

Furthermore, all identifier constants are distinct from each other. For

example consider the two declarations:

Define Enumeration Type-color: Red, Green, Blue.
Declare color: Let color be Type-color.

Define Enumeration Type-mood: Angry, Slue, Querulous.
Declare mood: Let mood be Type-mood.

If the two assignment statements were executed:

Let color be Blue.
Let mood be Blue.

then not only is it NOT true that the value of color equols the value of

mood (because the two Blues are distinct identifier constants), BUT IN

ADDITION, THEY CAN'T EVEN BE COMPARED, as in:

If color = mood Then ...

because, as stated earlier, color and mood are two distinct data types,

and therefore it Is illegal to compare them.

" 16 "

IV. VALUES, EXPRESSIONS, AND OPERATORS

VALUES AND SIMPLE EXPRESSIONS

In a programming language, .value is informally considered to be a

simple ter thAt can ba evaluated to yield either a storage location or

the contents of that location. If it appears on the lefthand side of an

assignment statement, its evaluation yields a location at which the

assignment is to be made; if it appears on the righthand side of an

assignment, or elsewhere, its evaluation yields a data value. The

description of the syntax of RAND-ABEL relies on the following

categories of values and expressions, which are explained in this

section:

Name Informal meaning

nrray-accoss Access to the value stored at one
of the cails in an array.

1value A reference that can appear on the
lefthand side of an assignment
statement; that is, it designates
a storage location at which a value
is located.

unicparary A value that is assigned to a parameter
in a function call. A simple value,
or else a parenthesized expression.

simplo-expr Any of the above values, or in
addition a pointer to a function.

expression A value, or a sequence of values
related by operators.

The following tables give more precise definitions for these terms,

nested to show the manner in which some definitions include others. For

example, since the boxes defining unitparam and Ivalue are contained

within the box labeled sixple-expr, all of the varieties of unitparam

- 17 -

and ivaluc (defined by the contents of their boxes) can be used wherever

a simplo-expr is needed. Similarly, the various types of arrny-accoss

can be used whenever an JvaJuo is needed.

+-expression -- -------

Report from function-Invocation

Evaluate unicpnro . . . unicparan
Evaluate with formnt-spoc unicpram . . . unitparan

unary-oporator exprossion
eoxpression binary-operator expression

siplo-oxpr
! I l l l l i ll ll l I I l I I l ll l l l l I

-- +

Rules:

1. The Report from function-invocacon expression calls the named
function and returns as its value the value returned by the
function. Example:

Let message be Report from plan of US, 1984, Europe.

2. The Evaluate expression allows the RAND-ABEL writer to generate
a string of characters (usable in further RAND-ABEL processing)
from a sequence of arguments, each of them a unitparam. This
string may then be used in subsequent RAND-ABEL statements, for
example, as an argument to a function that requires a string as
one of its parameters. The format-spoc is a string of
characters that can control the formatting of the resultant
string; the syntax and options available for a format-spac are
described in the subsection "Input/Output" in Sec. VII.
Example:

Perform data-logging
using Evaluate "The ally of" country "is"

(ally of country)
as message.

- 18 -

In the above example, note that blanks are not required within
the character strings to prevent the value of country from
running into "The ally of" and "is"; this is because the
default print format for an enumerated variable contains prefix
and postfix blanks. (See "Default Output Formats" within the
"INPur/OUTPUT" subsection of Sec. VII.)

A simpla-expr is defined by the following nested set of tables.

The nesting again shows that certain terms are contained within the

definitions of otheas. For example, a unicparm is one valid type of

stiplo-oxpr, so any of the methods of constructing a unitparam can be

used wherever a siplo-o.xpr is needed.

- 19 "

+ -si4pio-expr -- -------+

Function (unction-nam

+-unitpara -- +

Yes
No
onu mo ,7cd-valuo
numoric-licoral
quoted-scring
variablo-namo
Unspecified

oxpression)
--------------- ---------------------------------

-+--v-lu. ..--- +

variablo-nano

Value of variable-name
Value of array-accoss

Pointer to variabJo-naxo
Pointer to Attribute array-nao

+-array-accoss -----------------------------------

array-nama of simplo-axpr I .•I
in ,and
by ,and

, simple-oxpr
,and

------+---+1
----+--+

+---

Rules:

1. The Function keyw~ord, followed by the name of a RAND-ABEL
function returns as its value the address of that named
function. This returned value is of type pointer. Note:
Function is an alias for Pointer to.

- 20 -

2. "--" is a synonym for the keyword Unspecified, which is used in
conjunction with enumerated data types. (Sea the discussion of
enumorated data types in Sac. Ill.) In tables, the "don't
care" symbol "*" is also available.

3. The varlablo-nmaw or array-access following the keywords Value
of' must be of data type pointer. The clause returns the
contents of the storage location pointed at by that pointer.

4. The Pointer to' clause yields a value of type pointer. For

example:

Pointer to Attribute country-array

returns a pointer to the array named "country-array".

OPERATORS

The operators used to construct expressions can be categorized as

numeric operators, comparison operators (providing equality and

inequality tests), logical operators (yielding a Yes or No result), and

string operators. Each of these categories is described below. In each

case, we list a "preferred form" for representing these operators to

create as much consistency and readability in RAND-ABEL programs as

possible.

'The Value of keyword is identical in meaning to Occupant of used
in earlier versions of RAND-ABEL. Both keywords are currently
supported, but Occupant of is being phased out.

'The Pointer to keyword has the same meaning as Address of in
earlier versions. Both keywords are currently supported, but Address
of is being phased out.

- 21 "

Numeric Operators

Natlhematical
INota'cion "Entgli sh- like"

(Preferred Form) Notation Meaning

+ plus Addition
minus Subtraction

* times M1ultiplication
/ divided by Division

modulo Modulo
negative unary "-" sign

When an integer variable accepts the result of the division of two
integers, the result will be truncated toward zero to an integer.

Examples:

73/10 evaluates to the value 7

-73/10 evaluates to the value -7

Division by zero results in a run-time error.

These operators can yield floating point exceptions (i.e., error

conditions) in a machine-dependent manner.

The modulo operator returns the remainder upon division. Example:

23 modulo 8

is 7. The modulo operator requires integer arguments.

Only integer and real data types may be used as arguments for these

operators. (Exception: the more stringent requirement for modulo

- 22 -

Comparison Operators

Comparison operators are categorized below as "equality" or

"inequality" type operators. All comparison operators yield a value

that is Boolean. It is permissible that one of the operands to these

comparison operators have an ambiguous data type, IF that ambiguity can

be resolved by the requirement of consistency with the other operand's

data type. RAND-ABEL does not, however, accept two operands of

ambiguous data type and attempt to resolve the mutual ambiguity.

(Ambiguity can arise from a value like the identifier constant Blue, if

more than one enumerated data type contains this constant in its range.)

Equality Tests

Mathematical
Notation "English-like"

(Preferred Form) Notation Meaning

= is Is equal to

~: is not Is not equal to
are not

Both arguments to these operators must have the same type (with one

exception: an integer appearing where a real is needed is interpreted as

a real for that purpose).

Two operands from any one data type may be compared using these

equality operators.

Two strings are equal only if they have the same length (including

possibly zero length--i.e., the null string) and, at each respective

character position, their corresponding characters are equal.

(Upper-case and lower-case versions of a character are treated as

different characters in this test.)

- 23 -

Two enumerated values are equal only if they are represented by the

same identifier constant and are in the range of the some (enumerated)

data type. It is an error if two enumerated values are compared that

belong to different (enumerated) data types. The reserved word

Unspecified is the only exception to this rule: Any enumeration may be

compared with Unspecified.

Inequality Tests

Mlathematical.
Notation "English-like"

(Preferred Form) Notation MIeaning

>: is at least Greater than or
equal to

<= Is at most Less thtan or
equal to

> is greater than Greater than

< is less than Less than

Both arguments to those operators must have the some typo (with one

exception: an integer appearing where a real is needed is interpreted as

a real for that nurpnso.s).

The following data types may be compared using the inequality

operators: integer, real, string, enumerated. Note that Boolean data

types CAI/T0 be compared using these operators.

Integer and real data types compare according to their values.

Strings a and b compare as follows. (Note: in comparing two

individual characters, the collating sequence for the individual

computer on which RAND-ABEL resides is used; this test is therefore

implementation dependent.)

- 24 -

a. If a and b are both the null string, they ara g;4,1.

b. If one of them is the null string and the other i i,k, "4i,
the null sering is less than the other.

c. Otherwist, compare strings a and b character by . I
each of these comparisons is Yes (..e., true) &'r irt t Um. 1'
end of one of the strings is reached, but the othi.. 4':.-:.
still has additional characrs, therthe short,, iZ ic,
less than the longa r one.

d. :etrwise, compare strings a and b character by fh .f;.i4
•rh of these comparisons is Yes (L. a., true! up to ch actor

po:Altion k, but is No (iL.e., false) at chara&L p.osition k+l,
then if string a's character in position k+l is less than, or
greater than, string b's character in position k+l, then string
a is less titan, or greater than (respectively) string b.

Enumatued values compare with the inequality operatorn according

to the following rules:

a. If either or both values is Unspecified (or its synonym "--"),
then the result is No.

b. If the values belong to different (enumerated) data types, it
is an error.

c. Identifier constant Cl is loss than identifier constant C2 if
and only if Cl appears before C2 in the sequence of identifiers
defining the range of their common (enumerated) data type. If
they are the same identifier within this data type, they are
equal. For example, for the enumerated data type defined as

Define Enumeration Type-color: Red, Green, Blue, Purple.

comparisons will show

Red < Green
Purple > Blue
Green = Green

Logical Operators

Logical operators are used to combine two different Boolean

operands--that is, ones taking the values Yes or No--to yield a new

Boolean value. For example, a RAND-ABEL program might require the

logic:

- 25 -

If agreement and (Red-violates or Blue-violates)

Then Let agreement be No.

The assignment of the value No to the variable "agreement" will

take place only if the existing value of agreement is Yes, and in

addition either "Red-violatas" or "Blue-violatos" (or both) is Yes.

"English- liko"
Mathematical Notation

Notation (Preferred Form) Heaning

and Logical "and"
I or Logical "or"
~ not (unary) Logical

"not"

The meanings of these operators are given by the following table:

I II I I
a I b II nota I aandb I aorb

-------. +--- +---------------------------------
yesI yes II no yes yes
yes no II no no I yes
noI yes II yes I no I yes
nol no I yes no I no

The logical operators require Boolean vslues (that is, Yes or No)

as their arguments and return a Boolean value as the result.

Remember, Boolean variables are not enumerations. That is, they

cannot be Unspecified. In tables, "':'" can be used to denote "don't

care" for Booleans as for any other data type. However, -- or

"Unspecified" can be used only for enumerated data types.

String Operator

There is one string operator, which performs conc~tonation of two
strings to yield one renulting string. Concatenation may be used, (or

example, in the creation of tailored messages, as in:

Let outstr be "WARNING: " $ message $ " PLEASE RESPOND (YIN): ".

in this example, the string variable "outstr" receives a string

containing a variable "message", along with standard prefix and su(ffix

strings.

Mathematical
Notation "English-like"

(Preferred Form) Notation Moaning

$ concatenated with Concatenation

Only string values may be concatenated together. Tit result is a

string consisting of the first string followed by the second string.

Example:

"This is " $ "a test."
"This is "$"a test."

"This is " concatenated with "a test."

are all equivalent to:

"This is a test."

-27 -

There Is a way to Include values of other data types by converting

them to strings with the Evaluate statement as described under "Vdlues

and Simple Expressions" at cte begi-ing of this section.

Order of Precedence

Whenever there is any ambLuity or uncertainty, parentheses should

ba used to specify tite order in which operators should be applied within

an expression. When more than one operator is used in a sequence,

precedence relations are used to resolve the order. Operators with

higher precedence are performed first; within the same precedence,

operators or* performed within the expression fEom left to right.

Operators of the same precedence associate to the left. For example,

(a r, b & C) =((a F, b) & c).

The following table gives the precedence of RAND-ABEL operators.

Operators In the same row are of equal precedence.

Highest precedence: (not) - (unary)
* / modulo

& (and)

Lowest precedence: (or)

26- 28 -

V. DECLARATIONS

TO DECLARE A VARIABLE
+-dc--raco. . ..--I I

Declare voabr o-b-nOaa: I
I Declare varkb}o-n,-a by example:1 I
I I
I Let virinbo-nno be expression. I
I Let vorioble-n wa be Idanciflr conscant. I
I Let vorlfable-nae.a be anuoracped vrinblo. II I
4.---.4,

Rulas:

1. The type of the variable becomes the same as the type of the
expression.

2. The type of the expression must be uniquely daterminable at the
time this statement is encountered. (For example, if the same
identifier constant appears in the range of several enumerated
data types, then it may not be used in an assignment within a
declaration.) If Type-color includes Rod, Blue, and Green,
while Type-mood consists of lappy, Blue, and Querulous, thetn

Declare tint: Let tint be Groan.

declares the variable "tint" to be of type "Type-color", but

Declare tint: Let tint be Blue.

is ambiguous and therefore an error.

Examples:
Declare troop-strength:

Let troop-strength be 10000.

Declare force-ratio:
Let force-ratio be 5.8.

Declare message:
Let message be "ilelpl".

'The phrase by example is optional in a declaration.

- 29 -

Declare agreement;
Let a ogant be Yes.

Declare current- force-test by example:
Let current-force- ts. be Function calcl.

Declare allinca-member:
Let alliancc-mtmbor be France.

te spantil alignment of these s cezaents is not important;

they are aligned by variablc name here mrely for ease in

reading.

TO DECLARE AN ARRAY

The syntax dinagram below shows how to doclare a RAND-ABEL array.

+-deccJlara -o---

Declare nrrny-nona:
Declare array-noa by example:

Let nrray-noca of slopie-expr , . . .

Let nrray-no=a in siiplc-axpr , and
Let nrry-nao by sirpla-expr and

sipple-expr
and sJIpla-expr

be expression.

Rules:

1. There must be at least one simplo-expr.

2. The type of the array is the type of the exprossion, which must
be determinable at the time this statement is encountered.

3. Arrays can have one or more indices. (Arrays with zero indices
are equivalent to variatles.)

- 30 -

4. The sfipo-exprs that are used to index the array must be
either of typo integer or enumerated.

5. If any index is of type integer, it is designated by a single
integer constant, i, in place of sopla-expr. This index can
then take on the integral values 0 . . . n . Note chat index n
means that the index can take on n+l distinct values.

Noce chat d one-dimensional array, indexed by the smallest positive

integors (1, 2, 3, . . .) is often called a "vector" in some ocher

computer langunges. A two-dimensional RAND-ABEL array indexed by Ofn

smallest positive integers corresponds with the term "matrix" in otho,

computer languagoes.

Exdmple of an array with integer indices and enumerated value:

Declare chessboard-square:
Let chessboard-square of 7, and 7 be

Type-chess-piece.

where Type-chess-piece has been previously defined as

Define Enumeration chessboard-square:
king, queen, knight, bishop, rook, pawn, empty.

TO DECLARE A FUNCTION

Every function chat is used must be declared. Every function

either always returns a value, or never returns a value. The function

declaration indicates which of these cases applies, as well as the data

type of the arguments and value returned, if any.

- 31 -

+-d .c.'z'cr ion -- +

Declare tunc-namo:
Declare tunc-naoa by example;

Let e.prassion be Report from named-unction-cnll.
Perform na.d-luncclon-c o1J.

+--

Rules:

1. Tito first form must be used when the function returns a value.
Tie type of the exprossion must be the same as the type of
value returned by the function. Tiho type of the oprossion
must be determinable at the time this statement is encountered.

2. Tho second form is used only when a function does not return a

value.

3. A function must be declared before it is defined, and it must
be defined before any ',so. See Sec. VI for a description of
function definitions.

A nogid-function-calH is one that explicitly uses the function name

to invoke it, not a pointer to that function. See Sec. VI for a

description of naonad-tuncclon-c]J.

Examples:

Declare select-country:
Let France be Report from

select-country using alliance as range,
and strength as criterion.

Declare force-calc by example:
Let 5.0 be Report from force-calc using

France as country.

Declare validity-check:
Perform validity-check.

- 32 -

Functions may have parameters associated with their use. Each such

parameter is given a keyword that is used in the declaration of the

function, in its definition, and in all calls to the function. The

pairing of this keyword with a value means that arguments to a function

can be listed in any order. Within the definition itself the keyword

behaves like a local variable that has been assigned the associated

argument value from the function's call. Such keywords must be unique

for a given function, but can be (and frequently are) reused for other

functions.

" 33 -

VI. FUNCTIONS

DEFINING A FUNCTION

RAND-ABEL has two typen of functions: those that return a value

(always), and those that do not (ever). The function declaration

indicates which. A daclaration is any of the declaration typos

(starting with the keyword Declare) listed in Sec. V titled

Dec' irations. It is an essential part of the function definition.

+-functi'on-doainit ion ---+

Define named-unc ton-cnll : declaration . . .
declaretion

statement . . .
SCtatmnt

End.

+---::::::::---

If the function returns a value, at least one of the statements

within the function definition must be "Exit Reporting simplo-oxpr".

Moreover, one such statement must be reached during execution of the

function, otherwise a run-time error will occur.

If the function does not return a value, it is exited either by an

explicit Exit statement or else by "falling through" the statements to

the End statement.

Local variables may be declared after the definition heading of a

function and before any executable code. These, along with any function

parameters (which are NOT declared in the function heading), may be

referenced like any other variable throughout the function body but are

not accessible to any other functions called from within that function.

A function may call itself, either directly or indirectly, but is given

a new set of local variables each time.

- 34 -

Note that local variables may also be declared after tho opening

brace and before any executable code within an internal program block.

Such a variable will be valid until the corresponding closing brace is

reached.

Examples:

Define Timed-wakeup:
If Time Is at least Time-to-wake of (Comand-id of self)
Then
(Record "Starting move at maximum time " Time ".".

Exit Reporting Yes.
)
Else Exit Reporting No.

End.

NAMED FUNCTION CALLS AND FUNCTION INVOCATIONS

A nomad-funcction-caJJ is an invocation of a function in which the

name of the function appears explicitly. It is required, for example,

as part of the declaration of that function (which announced the names

and data types of its arguments, and the type of its returned value, if

any).

+-named-functlon-caJ -- +

func-n-o04a

func-nmo using oxpression as param-noama , .

for ,and

I . oxproession as paramo-nonI
,and for

m---

- 35 -

Rules:

1. In a named-function-call, the func-nama must be given
explicitly; a pointer to a functior is not allowed in this
case.

2. When used as nit example in a function declaration, the types of
each .xpression must be determinable at the time the
declaration is encountered.

By contrast, a fanccion-inrocacion has the same form as a nomad-

(unction-call, but it can have a pointer to a function in place of an

explicit function name:

+-function-invocotion -- -------

namd-f[unction -cal l

func-ptr

tunc-ptr using expression as paran-no o . . .
for ,and

. . . , expression as poram-nona
,and for

+---

When a function does not return a value, it is invoked through the

statement

Perform tunction-invocation.

When a function returns a value, it is accessed via the expression

Report from function-invocation

- 36 -

Examples:

Let message be Report from next-movo
using pawn as whites-last--movo-pieco.

If Report from Timed-wakeup
using now as time Is Yes

Then Perform Work.
Else Perform Error-handler.

If functfon-ro-parform is n function pointer, then

Let function- to-perform be the Function next-movo.
Perform function-to-perform using pawn as
whites- lost-move-piece.

- 37 -

VII. RAND-ABEL STATEMENTS

Statements are used in RAND-ABEL to define the operation of a

function. (Several statements can also occur at the "top level" in

RAND-ABEL outside of a function definition to sot the global context in

which other statements will operate: namely, declarations, the Data

Dictionary (see Sec. IX), and the Trace and Untrace statements.

The various forms of RAND-ABEL statements are described below

within the follcwing categories:

Assignment

Conditional Execution

Repetitive Execution

Table Statement

Functions: Invoking and Exiting

Input/Output

Compound and Null Statements

All RAND-ABEL statements begin with a keyword that uniquely

identifies the statement type. In general all RAND-ABEL statements end

with a period; the only exceptions are compound, conditional, and

repetitive statements whose form has an embedded statemont as the last

entity within the form; in those cases, the period ending the embedded

sCatoen:an becomes the statement delimiter.

ASSIGNMENT

Assignment statements are used to store a value into the location

specified by either a variable or an array element.

- 38 -

+-scatement --- +

Let lvaluo be oxpression.
Let pointer be exprossion.

Increase ivaJuc by oxprossion.
Decrease Jvajuo by expression.
Multiply ivaue by expression.
Divide Jvajue by expression.

+--

Rule: The (data) typos of the terms on the "lefthand side" and

"righthnnd side" of the assignment statement must match.

Two exceptions:

1. If a real number is required by the lefthand side, then if the
value of the expression is integer that integer is coerced into
a real for the purpose of this star.ement.

2 The righthand side can be an enumerated identifier constant of
ambiguous data type if that ambiguity is resolved by the type
of the Jvoiei or pointor on the lefthand side. For example,
the "Blue" in

Let color be Blue.

could be "mood" except that the type associated with "color"
unambiguously identifies the type of Blue as a member of the
enumerated data type "Type-color".

The terms Ivoluo and expression are defined in Sec. IV. In

general, an IJvlue is what can normally occur on the lefthand side of an

assignmont statement: namely, a term giving the address of a named

storage location, not a pure value.

- 39 -

Examples:

Let gross-profit be gross-sales - cost-of-salks.

Let force-ratio be Report from forco-calc
using France as side-I and Yugoslavia as side-2.

Decrease force-ratio by 2.5

CONDITIONAL EXECUTION

Conditional execution is controlled by the If statement. It allows

certain RAND-ADEL statements to be executed only if certain conditions

arn true, or are false.

+-stet:icnt---+I I
I If Booloan-.\prossion Then stacement II I
I If BooJoan-a.ypression Then stanemenc Else scataxonc II I
--- ----------

Rules:

1. The BooJitan-exprossion is any expression that evaluates to type
Boolean (i.e., that cakes on values Yes and No).

2. If the Boo Jan-expression evaluates to Yes, then the first
sLaceneon is executed.

3. If the BooJen-oxprossion evaluates to No and the Else clause
is present, the stacemont following the Else keyword is
executed. If the Boolean-e.ypression is No and no Else clause
is present, no action is taken.

4. As is normal programming language practice, if conditional
statements are nested, an Else clause is attached to the
nearest previous If clause that does not yet have an Else
clause attached. (If one needs a null If or Else clause to keep
the logic straight, use the RAND-ABEL null statement,
consisting of just a period, as in:

If king-unchecked Then. Else Perform Think.
or

If king-in-check Then Perform Think. Else.

- 40 -

This statement is not delimited by a period for reasons given at

the beginning of this section: the last s nttement embedded within the If

statement will contain its own delimiter.

Either stateont con of course be a compound statement (that is,

one or more doclarations and stacements contained within "(" and ")"

braces) thereby allowlng any needeil r oplexity in logic to be stated in

the Then or Else clauses.

Example:

If user-rosponse Is "Y" or user-response is '%:.1"
Then
(Perform Rcalculation.

Print "Calculation Completed. More? (YIN):
Let user-responsit be Report from query-user.

)
Else If user-responso is "N" or user-rtsponse is "NO"

Then
(Print "No action taken. 'ore? (YIN): "

Let user-responso be Report from query-user.
)
Else If user-response is "?"

Then Perform lielp-function.
Else
(Print "Your response not understood."

Perform HIelp-function.)

Note that If . . . Then rules cnis also be formed using the table

sLatemeIIL.

REPETITIVE EXECUTION

The RAD-ABEL For and While statemeits alliow one or more statements

to be executed repetitively--that is, zero or more times, depending on

the controlling variable or expression.

- 41 -

+-sntatem nt -- -+

For variablo : scatmnt I

While Boo] can-e.xpression : stateonc I

+--

Rules:

1. li the first form, the variable must bo of enumerated data
type. The staCananc is executed once for each identifier
constant in the range of the v'ariable, with the varlablo bound
in turn to each identifier constant, in the order in which the
identifier constants are declared as being the range of the
enumerated data typo.

Examples:

Define Enumeration Type-alliance: France, Germnny, Spain.
Declare alliance-members:

Let alliance-members be Typ-alliance.

For allianca-mombers Perform Force-cnle.

For each-country (US or UK or FRG or Belgium):(
Let Hembership of each-country be Nato.
Let Side of each-country be Blue.)

Note that the use of the or mo word here limits the execution
of this for statement to only the listed identifier constants
within the enumerated data type "each-country". All other
elements of that data type are excluded by use of the or
construct.

2. In the While form, the Boolean-expression is evaluated; if its
value is Yes, then the statement is executed; if the value is
No, no further action is taken. If the statement executes,
the Boolean-expression is then re-evaluated, and if Yes the
statement is re-executed. This sequence continues until the
value of the Boolean-expres.ion hnco.ens No.

- 42 -

Exmple:
Let k be 3.
While k0: (

Print resultsfilo k.
Decrease k by 1.

loads to the following records sent to the resulcsfilo:

3
2
I

The following two RAID-ABEI. statements are used within a repetitive

execution to chngo the flow of the program's logic:

+-.sCaeont -- +

Continue,

Break.

+--

Rules:

1. With in a repetitive execution, the Continue statement. acts as
coiplation of the current repetition, and control passes to the
next repetition of cite loop, if any.

2. The Break statement acts as completion of all repetitions of
cite loop, and control passes to the statement following the
repetitive statement.

3. In both cases, control returns to the most immediately
inclusive Table, For, or While statement. That is, to thoe
innermost repetitive statement if they are nested.

Examples:

Let k be 3.
While k>O:(

if k1 Then Break.
Else (Print resultsfile k. Decrease k by 1.)

)

- 43 -

lends to the sequence of records in resultsfile:

3
2

Let k be 3.
While k O:(

If k=2 Then Continue.
Else (Print resulcsfila k. Decrease k by 1.))

leads to one printed record in resultsfile:

3

£ollowed by an infinite loop, w.ith k=2 and the While statement

repatiLively excuting tCh no offects.

Repetitive execution can also be achieved by cte RAND-AHEL table

statement. This special RAND-ADEL statement is described in the

following section.

TABLE STATEMENT

Tile Table sctement is cite most. powerful statement In RAND-ADEL.

It can be used to call a function repeatedly, with different arguments,

or os a decision table. It is an example of a statement with a two-

dimensional sytcax; the spatial layout of the table-header is Importnnt

in determining the meaning of the table statement.

+-staemenC --- +

Table [unc-nace

Table compound-scateont
Decision Table

tii/ia-header.

table-body.

--

- 44 -

Function Table

Basically, the table statement allows the named function or the

compound-statercwnC to be execuc.ed once for each row of data in tihe tabl-

ody. If the table statement contains a named function, then the

columns of data within the cable-body are matched up with the function's

formal parameters by means of the column headings within the table-

heder; if tihe table statement contairs a compound-scoanant, then the

local variables declared within the highest level block of that compound

statement are matched with tihe columns of data within the cabJe-body by

meaus of te columa hoadings within the table-header.

The c.oncept atid power of the table statement is best illustrated by

example. The folloing RAND-ABEL table uses the function "Deploy". It

is similar to the. deployont table shown in Sec. I of this manual but,

here, is expanded to seven columns.

Table Deploy
[Th1li table initiates the doploymnnt of assigned forces to tile
Central European theater]

tity it unit-type unit-owner aseigned-to

in-area to-area

100 . Troops Denmark CEur
All CEur-1

100 % Troups Netherlands CEur
All CEur-2

25 , Troops FRG CEur
All CEur-3

100 , Troops UK CEur
All CEur-4

100 % Troops Belgium CEur
All CEur-5

This tablc statement causes the function Deploy to be called five

times, once for each rot of the cable-body. (Each row has seven

entries, cite last two being "folded over" so that they appear underneath

the columns labeled "unit-owner" and "assigned-to".)

- 45 -

Decision Table

Another important use of a table statement is as a decision table.

It is required by tle syntax of the table statement that slash (/) be

used within the table header of a decision table to separate tle

conditions from tihe action to be taken. For example, consider the

following decision table (a macro table) used as the "Then" clause of a

conditional statement:

If Current-situation is Eur-demo-tac-nuc

V"Eur-demo-cac-nuc" represents the situation that one or both
superpowers have used soeme tactical nuclear weapons in Europe,
but have done so primarily for demonstrative purposes--i.e.,
to coerce the opponent into terminating]

ThenC
Table
C

Declare Basic-status#: Let lBasic-status# be Basic-status.
Declare RisksO: Let Risks# be Risks.
Declare Escalation-guidanceO: Let Escalation-guidonce#l

be Escalation-guidance.

If (Basic-status# is Basic-status or
Basic-statusO Is Unspecified) and

(Risks# is Risks or Risksl is Unspecified)
ThenC

Let Escalation-guidance be Escalation-guidanceO.
Break.

)

Escalation-
Basic-status# Risks# / guidance#

_ /

goals-met -- Eur-term
progress-good low Eur-demo-tac-nut
progress-marginal low Eur-gen-tac-nuc
progress-good marginal Eur-demo-tac-nuc
progress-marginal marginal Eur-gen-tac-nuc

Note the use of the Break. statement within the compound statement

- 46 -

defining the operation of the Table statement, in order to stop the

iteration through the table rows as soon as a satisfactory condition is

found.

Using the Decision Table construct, the macro table above reduces

to the succinct:

Decision Table
Escalation-

Basic-status Risks / guidance

goals-met -- Eur-term
progress-good low Eur-demo-tac-nuc
progress-marginal low Eur-gen-tac-nuc
progress-good marginal Eur-demo-tac-nuc
progress-marginal marginal Eur-gen-tac-nuc

The rules for constructing a toblo-handor are as follows:

1. A tobJe-haador consists of one or more "text island," each
reprasenting the name of a parameter (if a function is namad)
or the name of a local variable (if a compound-statonont is
used) or the name of a local or global variable (in decision
tables).

2. A "text island" is a two-dimensional grouping of characters
such that each character of the group is directly adjacent
(either horizontally or vertically--not diagonally) to some
other character in the group.

3. Spaces are not permitted within an identifier used as a column
header, so indications of ownership in such an identifier
(e.g., "Red's Presumed-opponent") are not permitted.

4. Newlines are checked for in tables at the end of each logical
row. There may be extra newlines interspersed (allowing the
multiline-per-row table as shown), but the nowline break at the
end of the row must occur. This is quite useful for finding
errors involving table rows with missing or extra items.

5. In addition to normal "white space" characters (space, tab,
newline) and comments (enclosed in square brackets), the equal
sign (=) is also considered "white space" in determining the
"text islands" composing a table header.

- 47 -

6. If a "connector character" is useful in retaining the integrity
of a "ticxt island," the following characters may be used. They
provide the adjacency required by rule #2 above, but are not
themselves considered part of the identifier represented by the
text island:

I C)

(These connector characters also "count" in determining the
ordering of tie text islands; that is, their position as part
of a column heading helps determine the relative position of
that colimn heading.)

The following example is a table hender contrived to demonstrate

most of the above rules:

Table Rod-to-3rd-countries

country-
C cooper- =european------ -

affected side ation =involvement=involvement=

France White Uncooperative Disengaged Disengaged
GDR Red Combat-basing On-Call Noncombatant

This example calls the furction "Red-to-3rd-countries" twice (once

for each rot. of the table). The data in the table body are matched to

five function parameters having the following names: country-affected,

side, cooperation, european-involvement, swa-involvement. Those

function parameters need not have been declared or defined in that

order.

Tie use of the vertical bar (I) as a connictor character keeping a
"txt island" together within a table-header allows text headings to be

associated with individual columns of a table in a very flexible way.

Consil.'er the following valid RAND-ABEL table statement:

" 48 -

Table Initialize

Country.set [is it a country?, not a region/sea)

Superpower-set (is it one?]I
Player-status [should the model simulate it?]

Decision
Borders-WP -delayI I I I (-36611
Assortive-country (always fight if attacked] I daysJJ

I Nuclear-capable, Mom Orion Red- Blue-
II ber ta Temper,, pres pres

Region I I Leader ship tion ment once once

Afghanistan Y N Y Y N' N USSR -- Red Captive MaJor None I
Arabian-Sea N N N N N
Australia Y N Y N N N UK A.S Blue Moderate None Token 2
Austria Y N Y Y N N White Reluctant None None 4
Belgium Y N Y N N N US NATO Blue Reliable None TripW 1

At times, more table columns are needed to describe a situation

than will fit in the width of a single page. To allow wide tables to be

described, the following additional format rules for a tab1e-header

allow a "wrap-around" header to be created, in which one or more

additional rows of "text islands" provide the needed continuation.

Rules for constructing a multirow table-header:

(1) Table headers may be continued onto succeeding lines, if all
characcers in text islands composing one row of the header are
below all characters composing the previous row of the header.

(2) Within a row of text islands, column headers are read left-
to-right.

(Note that by this set of rules, the table above qualifies as

having only a single row of column headers, since the vertical bars (I)
associating text strings with columns keep the "'text islands" defining

each column header from being separated vertically.) In table

construction, the keyword -- can be used as a synonym for Unspecified,

and ** is used to indicate "don't care".

- 49 -

Multirow table headers are best understood by example. Consider

the following table statement, with six formal parameters:

Table Function-of-6

First- Second- Third- Fourth-
parameter parameter parameter parameter

Fifth- Sixth-
parameter parameter

12.5 Green 512 "String 1"
10002 (A + 10)

9.0 Blue 221 "String 2"
9943 (A - 24)

Note that a blank line has been used to clearly separate the first

and second rows of the table header; this is not strictly necessary,

but aids in keeping the text islands separate. Note also that the

entries in the table body "wrap around" in the same manner. In fact,

the entries are merely read linn-at-a-time and matched to the

corresponding headers in the table header. Although they have been

staggered so that they may be placed beneath their corresponding header,

this is again not strictly necessary; it simply aids in human

comprehension of the table.

The rules for a cable-body are simple: A table-body consists of a

setquence of entries, each of which is a unitporoa. (See the section

Values and Expression. for the formal definition of a unitparam. It is

P-tsentfally a primitive value or a parenthesized expression.) The

following additional rule holds for a tablo-bcdy:

R ules:

1. If the table-header describes i formal parameters or variable-
names, then the number of entries in the table body must be a
multiple of n. (Normally the entries are placed in columns
beneath the column headers within the table-header, so that
each row of the table naturally consists of n entries, except
when wide rows "spill over" onto the next line as in the
example above.)

- 50 -

2. Each entry must match in type with the corresponding formal
parameter or local variable. For example, "Second-parameter"
is an enumerated data type of type Type-color.

The tablo-heador and cabJo-body are each followed by a period (.)

as delimiter.

The RAND-ABEL Translator that interprets a table merely counts n

entries in the table body, then either calls the named function or

executes the compound-scat xnmot, then acquires the next n entries (until
a "." is encountered instead). There is no meaning attached to the

grouping of table entries into rows.

FUNCTIONS: INVOKING AND EXITING

The declaration of functions was covered in Sec. V (Declarations).

Section VI is devoted to the definition of functions and presented the

syntax for a function-invoctoion. Functions returning a value are

invoked by the expression Report from function-invocation. Functions

not returning a value (presumably executed for their side-effects) are

invoked by a Perform statement, discussed tere as part of a description

of all RAND-ABEL statements. We also present here the Exit statement

that allows completion of a function's execution, whether or not it

returns a value.

+-statomeant --- +
i I

Perform function-invocation. I

--.

Rule: This statement is used to execute a function that does not
return a value. (That is, it is executed for the side-effects
it causes.)

In some programming languages, a function not returning a value is

called a subroutine. In RAND-ABEL, all program logic is contained in

functions; a function not returning a value is equivalent to a

subroutine.

- 51 "

Example:
Perform force-ratio-calc

using France as side-I,
Yugoslavia as side-2,

and 3.5 E 4 as multiplier.

Within the statements defining a function, the following statement

is used to return program control to the place from which the function

was invoked:

+-sCta conC --- +! I
I Exit. I
[Exit Reporting sirnple-axpr. II I
--- ----------

Rules:

1. If the Reporting clause is omitted, then the function does not
return a value.

2. If the Reporting clause is used, then the function always
returns a value of the same data type as the simpla-axpr.

3. If there is more than one Exit Reporting statement within the
definition of a function, then each of those statements must
contain an oxprossion of the same data type. However, the
simpla-oxpr may be of ambiguous data type if that ambiguity is
resolved by the function's declaration.

If a function does not return a value, it is always invoked by the

RAND-ABEL statement:

Perform function-invocation.

If a function returns a value, then it is always invoked using the

expression:

Report from function-invocation

- 52 "

Even functions reporting a value may have side-offerts and in that sense

are not equivalftnt tm a mathematical function. If a function is

declared as returnfig a value, then it must return a value using the

Reporting clause. I[it is not declared as returning any value, it

must return using Exit.

Examples:
Exit.
Exit Reporting "Success."
Exit Reporting ((multiplier * force-ratio)/2.0).

INPUT/OUTPUT

Print, Log Statements

The following i/0 statements are used to communicate with the

"outside world"--that is, the computer system environment within which

RAND-ABEL is running.

Before the formal syntax description, some general terms should be

understood by the reader. RAND-ABEL operates within a C language

environment, within the UNIX operating system. The general

characteristics of C and UNIX are assumed. The UNIX system has the

(very powerful) concepts of "standard input" (which is often a

terminal's keyboard) and "standard output" (which is often a terminal's

display screen). Input and output consist of a stream of characters,

which is usually directed to the standard input and output ports.

ifoa'ever, these data streams can be redirected, for instance into a file,

or Into the output or input streams of another process running in the

computer.

As data are emitted from a RAND-ABEL program, it is either

formatted (according to its date type) in a standard (i.e., default)

manner, or else the programmer can exercise some control over the format

in which it appears. A special language of format codes, consisting of

a string of characters, is used to specify formatting of I/O. The

default formatting for each of RAND-ABEL's data types, and the special

format codes, are described within this section.

- 53 -

Print unicparan . . . unitparmn. I
Print with tormat-,pec un:rpiron . . . unitparam.I I
Print srre4na-n3 unicparn . . unieprn.. I
Print scre, nama with forrat-spec unitCpara . . unitpkiram. II I
Log unit pr.ii . . . unicpiran. I
Log with forwc-,vpc unit pwrnn . . . unCpatrdt. II I
Log streamnnei unitparom ... unit prnn. !
Log stres!n=iv with torraic-spvc unitparin . . . nftp.ra, 1

I I

Rules:

1. The Log staemnt causes a stream of data (defined by the
sequ!encn of unitprams within the statement to be sent to the
output stream.

2. The Print statement causes a scream of data (defined by the
sequenca of unirp.azros within the statement) to be sent to an
output stream.

3. The default output stream is the UNIX stdouc; if a streannrnl
is given, output from Print or Log is directed to that output
stream in3tead.'

4. If the optional with tornat-spc clause is omitted, all output
is formatted according to standard defaults determined by the
data types of the unitparams being output.

5. If the with fornac-spac clause is included) the (ormat-spoc is
a RAND-ABEL expression of type string. The character string is
interpreted as a specification for formatting of output, and
output is formatted according to its specifications.

6. A value of type pointer can be output as a hexadecimal number
for debugging purposes, but this is not expected to be used in
a producLion program.

'If the RAND-ABEL program is executing in the context of the RSAC
system, output should not be sent to the default stdout, as this will
conflict with system CRT screen management.

- 54 -

The definition of a unicp.aran is contained in the subsection Values

and Expressions within Sec. IV. Basically, it is a simple value or a

parenthesized RAND-ABEL expression.

Default output formats are used for each data type when no control

is provided by an explicit for.ac-spec. These default output formits

are described in the following subsection.

Examples of the Print and Log statements are given at the end of

this subsection, after the various formatting options are presented.

Default Output Formats

If no special format controls are given, each data type ias a

standard way in which its value is printed. These default output

formats are given by the following table.

DatalTyp Default Output Format

Integer A string of digits, with an optional
prefix minus sign. No decimal point.
Delimited by one blank on each side.

Real A string of digits with an embedded
decimal point. At least one digit
is printed before and after the decimal
point, even if it is a zero. Optional
prefix minus sign. Numbers less than
one-millionth (I E -6) are considered
a zero. Otherwise, for numbers less than
one, enough decimal places are printed to
show at least two digits of significance.
Delimited by one blank on each side.

String The string is printed literally, with
no surrounding quotation marks, and
not delimited by blanks.

Boolean The string "Yes" or "No" is printed,
without surrounding quotation marks.
Delimited by one blank on each side.

Pointer A pointer-type value is output as a
hexadecimal number for debugging purposes,

- 55 "

using the sae conventions as the
integer data typo.

Enumerated Tie identifier constant is printed
without surrounding quotation marks.
Delimited by one blank on each side.

Format Specification

A £or=-7c-spec is used to control the formatting of output. It is a

sequence of characters that are printed as listed, except when the

special characters "1" and "\" are encountered. To % is followed by a

special formatting code. The formatting codes recognized by R&ND-ABETY

are as follows:

i Enumerated data type
#Vs String
?9b loolean (Yes or No)
Wd Integer without a decimal point
%e Real (or floating point) scientific notation
Af Real (or floating point) fixed decimal point
g Real (or floating point) general; uses scientific notation

or fixed decimal point, whichever is shortest.

A literal percent sign is entered in a format string as r*.

A number may be placed between the percent sign and the letter.

That number specifies the overall number of characters allocated to the

value. If a number is used, the field will be blank padded, unless the

field width number begins with a leading zero, in which case the field

will be zero padded. The field width number can optionally be followed

by a decimal point, and then another number. The second number will be

the number of digits to appear after the decimal point for e, %f, or %g

formats.

There are other special options that can be used in these format

strings. They obey the conventions of "printf(3)" in Section 3 of the

UNIX Programmer's Manual, Bell Laboratories. That document should be

consulted for more detailed information.

- 56 -

The backslash (\) is followed by a character or sequence of 3 octal

digits that represent special characters:

\n .Newline (line feed)
\r Carriage return
\ iHorizontal tab
\b Backspace
\f Form feed

Backslash
\9 Single quote
\ddd Any bit pattern (exactly 3 digits in octal notation)

These special escape sequences allow any ASCII character to be

produced. For example, "\n" allows more than one line of text to be put

in the some string, and "\" causes a page eject. By using a 3-digit

octal (i.e., base 8 number system) code, any ASCII character can be

produced; e.g., one could make the CRT terminal "bell" ring by the

following statement:

Print "\007".

Streams

A stream is a pathway through which information is transferred from

a program to a terminal, file, or other program. The information is

transferred as a stream of characters.

The normal output stream for Log and Print statements is the UNIX
"standard output," which is initially act to the user's terminal.

If a screamnna has been used in a Log or Print statement, but

that stream has not yet been opened, then a runtime error will be

generated.

The three predeclared and preopened streams are: "Input",

"Output", and "Error".2 "Input" is the stream of characters received

from the user's terminal keyboard. Reading a character from Input

causes UNIX to wait for the user to type in a line of input text.

2It will nhlp the C programmer to know that these correspond
directly to C's stdin, stdout, and stdorr.

- 57 -

"Output" corresponds to the user's terminal screen. Printing a line on

the stream "Output" causes the line to appear on the user's terminal.

"Error" is also directed to the user's terminal. It is defined

separately from "Output" since the program may want to redefine one of

these to go somewhere also.

RAND-ABEL supports three predefined, stream-oriented functions.

They are:

FunctionName Arg.umentI Argument 2 Return Value__

Open-stream (flc-nago code screoto~o
Close-stream scron.oaao (none)
Flush-stream screa=nano (none)

In the above function calls, (Ilo-noca is a string argument that is

either a UNIX file name or else a full UNIX pathname (i.e., giving

directory, subdirectory, etc.). Hoda is one of the strings: "read",
"write", "append". The value returned from the Open-stream function

should be assigned to an Integer variable that stores the ID of the

stream. This same variable is then iiqed as an argument to the

Close-stream and Flush-stream functions.

The Open-stream function associates a UNIX file or path, in road,

write, or append mode, with a screeanace. If a file is opened in write

mode and the file does not exist, it is created. If the file does

exist, .r is deleted first. If a file is opened in append mode, all

writing to thct file is appended to the end of the existing file, if

any.

The Close-stream function closes a stream, making it unavailable

for further use (until reopened). It is standard practice to close

streams when they will no longer be used by the program.

The Flush-stream function is useful primarily for debugging

purposes. Typically, when a RAND-ABEL program executes a Log or Print

statement, the only effect is ','o fill that file's buffer in the

operating system. Later, the operating system will perform the actual

- 58 -

write tto the file on disk. This buffering of output provides

significant performance advantages. This buffer will be written to the

appropriate file when a RAND-ADEL program stops execution in the normal

manner. However, it is possible for a RAND-ABEL program that has an

error to abnormally exit without first writing the buffer to disk. This

can cause the programmer to think that his RAND-ABEL program terminated

at a point much earlier than is actually the case. To got around this

problem, the Flush-stream function can be called to write the contents

of the buffer to disk. Because continued use of this function can

degrade system performance, It is used pximarily for debugging purposes.

Since "Input", "Output , and "Error" are already predeclared by the

system, they can be used to declare other stream variables. For

example:

Declare Output-file by example: Let Output-file be Output.

Examples of Input/Output Statements and Functions

The following examples illustrate many of the possible uses of the

various input/output statements and functions described in this section.

(Declare Hessage-file to be a streoamname)

Declare Message-file by example: Let essage-file be Output.

Use the Open-stream function to associate a UNIX file with this
streamname, and set its mode to write-only I

Let Hessage-file be Report from Open-stream
using "-anderson/ABEL/programs/messages" for file-name,

and "write" for mode.

Perform a set of writes to that file

Print Hessage-file with "Threat level is now: %5d in country: %i\n"
threat (Report from select-country

using Country-list as options).
Print Message-file with "Force ratio is %3.lf at time %d \n"

ratio game-time.
Print Message-file "End of game reached. \n\n"

Close file I

Perform Close-stream using Message-file as streamname.

- 59 -

COMPOUND AND NULL STATEMENTS

A compound statement is a sequence of zero or more declarations

followed by a sequence of zero or more RAND-ABEL statements, all

delimited by braces. It can occur wherever a stateonn can. It allows

more complex program logic to be described thar, is allowed by the basic

set of RAND-ABEL statements:

+-stement -- +I I
I (decJaracion . . . dccJarati'on II I
I stnCtant . . . stncon) Ii I
--

Rules:

1. All dec~lratlons occurring within a compound statement arc
local to that statement; they have no effect outside that
statement.

2. Each docJaratlon is processed in turn, then each statamant is
executed in turn. To obtain more control flow options,
conditional and repetitive execution statements can be used, as
well as function invocations.

Notice that a function-dofinition is not allowed within a compound

statement. All function definitions are at the "top level" of a

RAND-ABEL program.

The compound statement is not terminated by a period, since a

peiod occurs as a delimiter to the last statement within its body.

If the compound statement requires more than one line of program

text, it is traditional to line up the bracas vertically, for ease in

visualizing the matches between balancing braces. This positioning is

for human consumption only; it is not used by the RAND-ABEL Translator.

- 60 -

Example: Tit following set of nested conditional statements uses
compound statements to denote the sot of RAND-ABEL
statements to be executed at various places within the
conditional logic. This example is repeated from
earlier in this manual.

If user-response = "Y" or user-response = "YES"
Then
(Perform Recalculation.

Print "Calculation Completed. Hore? (YIN): "
Let user-response ba Report from query-user.

)
Else If user-response = "N" or user-respoise = "NO"

Then
(Print "No action tabmn. More? (Y/N): "

Let user-response he Report from query-user.
)
Else If user-response =

Then Perform Ifelp-function.
Else
(Print "Your response not understood."

Perform Help-function.)

A null statement consists of a period, the normal terminating

delimiter on a RAND-ABEL statement, only. It is useful within

conditional statements to control logic flow. Empty curly braces are

also a null statement.

+-statemant --- +

I .

I I

SI---

Rule: This statement causes no effect.

Note that a side benefit of this statement is that extraneous

periods used in error as statement delimiters (for example, after a

conditional statement) do not cause a syntax error and have no effect.

- 61 -

Example: The following example, repeated from earlier in this
manual, illustrates the use of the null statement to control
logic flow within a conditional statement.

If king-unchacked Then. Else Perform Think.

- 62 -

VIII. META-STATEMENTS

The following special statements can be used to influence how

RAND-ABEL programs are written and interpreted.

#DEFINE

The #define statement provides an ability to create a macro giving

a synonym or alias for a string of char-cters to be substituted wherever

that macro identifier appears:

+-Moto-sttf2cmonf --
I I
I #define name (unquoted-string 1. II I
+--

Rules:

1. The namo may be any RAND-ABEL Idontiflor.

2. Wherever that identifier appears, it is replaced by the
unquotod-string sequence of characters BEFORE THE RAND-ABEL
TRANSLATOR INTERPRETS THE RESULTING STATEMENT.

3. After replacement, the RAND-ABEL Translator continues its scan
at the beginning of the replacement string, so any #define
identifiers it contains will similarly be replaced. #define
statements may be nested to any level.

This form of "macro string substitution" can be used to change the

surface appearance of RAND-ABEL programs. It should be used cautiously,

since the resulting programs might well become less readable to persons

who know the RAND-ABEL language.

- 63 -

Example:

#define c-dac
[Declare country:

Let country be France.],

INCLUDE

+-matal-statont --- +
I I

Include "£ilonao".
I "fiooi

I---

Rules:

1. The contents of the file whose name (or pathname) is given are
inserted at this point in the RAND-ABEL (or C) program. The
file name or pathname is interpreted relative to the UNIX
directory containing the current source file.

2. After the text insertion takes place, the interpretation of the
resulting file begins at the start of the newly inserted text
lines, so if they contain Include statements, those statements
are executed as they are encountered. Include files can be
nested up to eight levels deep.

An Include statement is often used to incorporate a standard sot of

declarations or definitions into a RAND-ABEL program.

Example:

Include "libraries/red-agent/dictionary. D".

- 64 -

DEBUGGING: TRACE AND UNTRACE

+-statement --- +

Trace If.
Trace Function.

Untrace If.
Untrace Function.

------------------------------------ ----------
Rules:

1. Trace turns on reporting for either If statements or function
invocations; Untrace turns off reporting.

2. All trace data are appended to a ,lpecial file named "dabug.out"
within the current UNIX directory.

Function trace data consists of readable statements upon entrance

to a function stating the function's name and the values assigned to

each of its formal parameters. If the function returns a value, that

value is reported to the file upon exit from the function.
"If" trace data writes to the some "debug.out" file. Each

execution of a conditional statement, when Trace If is on, causes the

conditional statement itself to be written to the file, along with an

indication of whether the Boolean-exprossion evaluated to Yes or No.

Trace and Untrace are not executable statements. Rather, there

are commands to the RAND-ABEL Translator to embed tracing information

within the generated C program. Trace and Untrace statements can be

nested; an Untrace turns off the corresponding nearest Trace of the

same type.

Tracing can significantly reduce the speed of RAND-ABEL program

execution and tends to generate large amounts of output. It should

therefore be used selectively and only during program development.

Currently, the Interpreter allows two additional forms of tracing,
namely Trace Decision Table and Trace Let.

- 65 -

IX. DATA DICTIONARY

The Data Dictionary facility in RAND-ABEL permits largo, complex

systems to be developed from separate modules that are created

individually by different programmers. It is a much more elaborate and

useful facility than the old concept of a "common" area in programs that

sttas data used in common by the different programs.

The RAND-ABEL Data Dictionary describes the contents and attributes

of a data set to be used in common by all the RAND-ABEL modules

constituting a system.' This common data set contains the specification

of:

* A list of items (variables, attributes, tables, otc.) to be
included in the common data set

" A list of items, similar to the list above but including sub-
procedures and functions, which are not part of the common data
set

* A structuring of the source files that make up the system

* Access restrictions, ownership, method of implementation, and
other such attributes for data items and source code

Ancillary information, such as the author, module name, and
other administrative attributes associated with data items and
source code

The Data Dictionary consists of a set of files that are maintained

in an extended RAND-ABEL language. The RAND-ABEL processor translates

these files into C language data structures. The resulting C code can

be used by a system monitor (a special program providing the foundation

for the system being developed) for allocating memory for the data items

described and also by a front-end data editor that can be used for

display and manipulation of these items.

'In the RAND Strategy Assessment System (RSAS), this common data
set is called the World Situation Data Set (WSDS).

- 66 -

A Data Dictionary entry begins with a Declare statenment. (Sea the

earlier section of this manual on Declarations.) After this declaration

of an item are a number of statements describing the item. The sequence

of descriptions is ended when a new Declare is found for the next item,

a new Default statement is reached, or the End Declarations statement is

encountered.

Many attributes that can be associated with a data item will be the

some for an entire group of items (e.g., author, access restrictions,

etc). To avoid the need for typing a whole list of attributes for each

item, "default" attributes may be declared. When a default is declared,

it affects all subsequently declared data items within the current file

and any files "Included" within that file. A default does NOT affect

any files that have "Included" th* file that contains it. This nested-

default mechanism allows higher-level files to create default

environments for lower-level files without worry of a default in a lower-

level file causing side-effects.

The set of Data Dictionary declarations has the following syntax:

+-dao dictionary spacif-catlon block -----------------------------+

Begin Declarations.
(No) Doatult DDdoclaraion ...

doclnration

DMcclaration . . .

W~dclaration

declaration

DDdeclaration . . .

Mcdcclaration

End Declarations.
I I-- --- --- --- -- -- -- -- --- -- -- -- - -- --

- 67 -

The individual data dictionary declarations (i.e., DDdoclarations) are

of three types:

1. Defining declarations. Information that actually affects the
object code, such as type, size, or access data.

2. rdentifying declarations. Information that is documentary but
mandatory.

3. rntormacivo declarations. Information that is optional but
useful as documentation.

Edach of these categories of declarations is described below.

DEFINING DECLARATIONS

These declarations are mandatory for each external data item but

may be handled by default declarations that are in effect. (See Creating

and Removing Default Declarations below.)

+-DDdecJaration --- +

Method: Direct.
Method: Function.
Method: Macro.

Function: func-nama.

Macro: string-literal.

--

Rule: Method means "method of access." An item's access method
tells whether the variable is accessed directly or via a
function or macro. If an item is accessed via a macro, the
macro must be defined using a Macro statement. If it is
accessed via a function, the name of the function must be
given using the Function statement. The Macro or Function
statement must immediately follow the Method declaration.

- 68 -

Examples:
Method Function.
Function: calculate-attrition.

where "calculate-attrition" must be a function that returns a value.

Method Macro.
Macro: ((*GOVERNentry)(char *)F + 2) - F->governs + 1

+-DDdclaration -- +
I I

Use: Clone. I
J Use: No Clone. J

Use: Constant.I I
m+ -mm--

Rule: The Use declaration indicates whether an item is to be
created dynamically (Clone) when the Push function is
invoked and discarded when the corresponding Pop function is
executed; or whether one instance of the data item is to be
maintained throughout a Push and Pop (No Clone). Data that
are never changed during program execution are declared with
the Constant option.

Currently, No Clone is not implemented. Variables declared No
Clone will behave as declared Clone.

Example:

Use: Clone.

+-DDdaclaration ---I I
I Owner: ownar-nno. II I
J Owner: Global. I
I I

Rule: This declaration allows different modules to have separate
items with the same name. Source code also has an owner and
automatically accesses either its own or "global" data
items, unless otherwise specified by this declaration.

" 69 -

The "oanor-namo" is one of a, set of commonly agreod-upon names by

which the various groups developing coda are identified. The keyword

Global is used if there is no specific owner.

Examples:

Owner: Red.

Owner: Global.

+-DDdoclarcion -- +

Read Everyone.
Read otenor-nago . . onor-namo,
Read oiner-nnno , . . , ounor-nnr.

Noread Everyone.
Noread ounor-namo . . ounor-nacw.
Noread oienor-nno , . . • onor-nniw.

Write Everyone.
Write ownor-nama . . . o:unor-naoa.
Write ouner-nama , • . • , o:nor-nama.

Nowrite Everyone.
Nowrite ownor-naoo . . . ounor-no,.
Nowrite ownar-namo , . .. owner-nano.

--- +

Rule: These declarations specify which source code owners (i.e.,
"access groups") can read or write this item. The "No"
prefix can turn off a default or serve documentary purposes
by establishing a lack of access for a particular group.

The special group Everyone applies to all access groups and can be

used to grant or deny access for all groups.

- 70 -

Exmples:

Noread Blue, Neutral.

Write Everyone.

+- Dccclar3o- -- ---------
I !
I Read Format: scring-litara. Ii I
! Write For-mat: scring-JcornJ. II I
4--- I--------------.

Rule: Tite preferred format for reading and writing this data itets
is stated a a quoted string of format descriptors. (Sea the
subsection Format Specification within the INPUT/OUTPLU
portion of Sec. V1I, RAND-ABEL Statemants.).

It is desirable to specify output formats for string variables,

integers, and real (floating point) data whenever possible, sinco it

helps the display programs format the data in a consistent manner. It

is unnecessary to specify output formats for enumerated variables since

the field width needed to display them Is easily dotermined by the

display programs.

Example:

Write Format: "%5.3f".

2For programmers familiar with the C language: the format
specification is the same as those used for the scanf and print£
functions.

- 71 -

+-DMdccJaration --- --------I I
Validation Rangn: ancoraJ to numaral. I

J Validation Function: (unc-nnra. JI I

Rule: In the first form, an inclusive range of numeric values
(either integer or real) is given. In the second form, a
loolean function is named that is expected to return Yes
for a valid item, and No otlt'rwisa.

Examples:
Validation Range: 2.7 to 6.75
Validation Function: Chck-value.

+-DDdccnrao --on.------------------------------------.------- +I I
I Prompt Function: (unc-nnaw.
I Prompt String: scring-Micera).I I
--- --------------

Rule: In the first form, the named function will be called prior
to input for this data item. It returns a string that will
be displayed on the user's CRT screen. In the second form,
a quoted character string is given for display prior to
input of the data Stem. In the RSAS environment, the input
of data is performed from the Data Editor program.

Examples:
Prompt Function: Show-message.
Prompt String: "Type ratio as a decimal: ".

+-DDdacJaraton ---+
Initialize.

I I

I No Initialize.

I--I I

Rule: This declaration indicates whether the item can be
initialized by the RAND-ABEL Translator or not.

- 72 -

At this time, the Initialize declarations may be used in a program,

but their effect has not been implemented. Consequently, they do not

alter program behavior.

Examples:

Initializc.

No Initialize.

IDENTIFYING DECLARATIONS

These declarations are mandatory but take an arbitrary comment as
an argument. They are used for stnndardized wcumentation of a module.

+-DDdeclarntion --+

Author: co .onc.

Date: commInt.

Definition: cormant.

-- +-

Rule: The commant may be a free-format comment enclosed in the
documentation of the program or data item.

Examples:
Author: [Hark LaCasse].
Date: (83/02/05 3.
Definition: [This function returns a

string value that shou.16
be displayed prior to input
of the force ztructure ratio 3.

INFORMATIVE DECLARATIONS

These denlarations are optional. They provide additional

structured documentation of a RAND-ABEL program module.

- 73 -

+-DDdeclaration -- ---------+
I I

References: comront. II I
Comments: comxont:. I

Status: commont. II I
-- ---------------------

Rule: The comment may be a free-format communt enclosed in square
brackits "[)" that aids in the documentation of the program
or data i .em.

Tihe Status declaration is often used to represent whether a

variable is "proposed" (indicating the author is willing to entertain

propnsals for change) or "confirmed" (indicating the author has closed

debate on the subject).

Examples:

References: [See R-1258, Section II .
Comments: [This function is a placeholder

until ct mors complete computation
can be developed].

Status: [Proposed J.

CREATING AND REMOVING DEFAULT DECLARATIONS

As mentioned above, all the mandatory Data Dictionary declarations

..4ed not be given for each data item or function. Hany of these

declarations can be covered by use of declared defaults.

Any of the DDdeclarations described in this section may be preceded

by the keyword Default. If that is done, that setting for the

particular DDdoclaration remains in force within the current file (and

files Included within it) until a new default is given cr a No Default
is declared for that type cf DDdeclaration. Any default setting may be

overridden by individual DDdeclarations asso-ciated with a particular

data item or function.

- 74 -

Examples:

Default Owner: Red-Agent.
Default Method: direct.
Default No Initialize.
Default Author: [Hark LaCasse, randvax!lacasse].

The following No Default statements may be issued to remove a

default setting on a type of DDdaclaracion:

+-,daclraton --+

No Default Author.
No Default Comments.
No Default Date.
No Default Definition.
No Default Initialize.
No Default Method.
No Default Owner.
No Default Prompt Function.
No Default Prompt String.
No Default Read Format.
No Default Write Format.
No Default References.
No Default Status.
No Default Use.
No Default Validation Function.
No Default Validation Range.

--- I

When No Default is specified for any mandatory DDdclaratlons,

such a DDdaclaration must accompany each data item or function until the

next Default or End Declarations statement is reached.

Examples of No Default statements:

No Default Comments.
No Default Prompt String.
No Default Read Format.
No Default Validation Function.

- 75

EXAMPLE OF A DATA DICTIONARY DECLARATION SECTION

The following is a complete example of a Data Dictionary

declaration section within a RAND-ABEL program. Such a RAND-ABEL code

section is often contained in a file that can be Included within another

RAND-ABEL file to obtain the standard defaults and definitions required.

(Sample Data Dictionary Entries for Blue Agent January 1984

Begin declarations.

Default Owner: Blue.
Default Method: Direct.
Default Read: Blue.
Default Write: Blue.
Default Use: Clone.
Default No Initialize.
Default Author: [,nrk LaCasse, randvaxllacasse].
Default Date: [84/01/05].

Define Enumeration Type-lookahead-opponent: BRI, BR2.
BR1 is Blue's Red version one]
BR2 is Blue's Red version two

Declare Lookahead-opponent by example:
Let Lookahead-opp-nent be Type-lookahead-opponent.

Definition: [Blue's Red, opposes Blue in Lookaheads].

Declare Time-to-wake by example:
Let Time-to-wake be 45786.

Prompt String:
"Enter the date and time in thG format: WM DD, hh.mm".

Validation Function: Check-ti-me-input.
Definition: [General purpose, future time to wake Blue].

End Declarations.

- 76 -

X. COPROCESSES

A coprocess is an executing program (a process) that is started by

another executing program (its parent). The two then execute

independently and asynchronously of one another This section discusses

how coprocesses are created, put to sleep, and terminated.

CREATING A COPROCESS

Coprocesses are created by calling it built-in RANU-ABEI, function

called Startup-plan. It takes two arguments, plan-start and plan-nanma.

Plan-start is given an object representing the top-level funt.Lion of thn

to-bi-craated process. This object can be created by use of thn

function expression. Plon-nnmo is a string identifying the new process.

The function Startup-plan returns an object that is of type process.

Threfore, the initiation of a new process might be performed by a

sLatement such as the following:

Declare new-proc: Let new-proc be Self.

Let new-proc be Report from Startup-plan
using (Function Top-of-plan) as plan-start

and "Offensive strategy" as plan-name.

Note the use of the expression (Function Top-of-plan) to create an

obj tct rpresenting the user's function named "Top-of-plan", which is to

he executed as the beginning of the new process.

The execution of the SLartup-plan function is the only method by

which a value of type process can be created.

PUTTING A PROCESS TO SLEEP

A process can cause itself to "go to sleep"--that is, to stop

processing until it is awakened by some external program. This is done

by calling a built-in function called "Sleep". Sleep takes no arguments

and returns no value:

Perform Sleep.

- 77 -

There are no facilities within the RAND-ABEL language itself for

awakening a function once it is sleeping; at present, those facilities

are part of the support environment in which a RAND-ABEL process

resides and must be invoked directly uithin that support environment.

(See Appendix A for some further information on the support environment

for RAND-ABEL.)

TERMINATING A COPROCESS

To terminate a coprocess, the "Remove-plan" function is used. It

takes one argument, called process: an object of type process that

identifies the process to be terminated. Therefore, to terminate the

process created by the example above, one would write:

Perform Remove-plan using new-proc as process.

RESERVED COPROCESS VARIABLES: SELF AND PARENT

The RAND-ABEL system contains two reserved process-type variables:

Self and Parent. Self is always equal to the current process. Parent

always refors to the parent process that spawned a given process. These

variables can also be used in Declare statements as examples of

processes, so that new variables of type process can be declare".

RULES FOR THE USE OF COPROCESSES

The following rules govern the use of coprocesses.

1. A coprocess may not call Remove-plan on itself.

2. Processes can be the object of assignment statements, so that
statuments such as:

Let me be Self.

are valid.

3. Processes can be values of suitably defined variables or
arrays. This was illustrated in above example, where "me" is a
variable taking on a process as its value.

- X -

4. Processes can be arguments of suitably declared arrays. For
example:

Declare active..process:
Let active.process be Self.

Declare array: Let array of active-process be 17.

5. Processes cin be parameters of functions. For example, the
built-in furction "Remove-plan" has as its single parameter an
object of ty),e process.

6. Processes are subject to no other operations.

In the RSAS environment, coprocesses correspond to decisionmaking

agents or other simulation models. At the top level, a system monitor

controls the execution of coprocesses.

A given agent (coprocess) may create several subordinate

coprocesses to create an organizational hierarchy (such as a hierarchy

of command in a military command structure as demonstrated by RSAS

decision models).

- 79 -

XI. TOP-LEVEL RAND-ABEL DECLARATIONS, DEFINITIONS,

AND STATEMENTS

The RAND-ABEL "language" is a complete programming language,

However, only certain of the RAND-ABEL statements and declarations can

occur at the top level of a RAND-ABEL program. All other RAND-ABEL

constructions occur within these .op-level statements and declarations.

The only RAND-ABEL declarations and statements that can occur at

the top level are:

• Any valid RAND-ABEL Declare

4 Any valid RAND-ABEL Define

• The RAND-ABEL stacoments:

Trace If.
Trace Function.

Untrace If.
Untrace Function.

* One of the two mutually exclusive statements:

Owner: name.
Owner: Global.

* A special top-level-only Declare:

Declare Ignore name . . . name.
Declare Ignore name, . . . , name.

* The set of declarations providing information to
the Data Dictionary facility (see Sec. IX).

Begin Declarations.
declaration

DDdeclaration . . . DDdeclaration
declaration

DDdeclaration . . . DDdeclaration

End Declarations.

- 80 -

The meanings of all normal RAND-ADEL Declares, Defines, and

scateo.ants are found In earlier sections of this document. The moaning

of tate ownership statements (Owner) is found in Section IX; when used

here, the statements declarn the ownership tag to be put on all

subsequent RAND-ABEL code.

The Declare Ignore statement is used to add a set of Idonti(fers

to a list (initially null) that the RAND-AIEL Translator will ignore

whenever they are encountered. These identifiers can thein be used as
"noise words" in RAND-ABEL statements, presumably to increase their

readability.

For example, tho, declaration:

Declare ignore a, an, the.

allows one to write a RAND-ADEL statement such as:

Let the color of a piece be white.

whiri is equivalent to the RAND-ADEL statement uring explicit comments:

Let (the) color of (a) piece be white.

or, the more brutally simple:

Let color of piece be white.

Care should bn taken in the declaration and use of such noise

words, since readers of RAND-AEIL code might overlook the Declare

Ignore statement and believe that these words are part of valid

RAND-ABEL syntax, pu.sibly leading them to write incorrect RAND-ABET,

prugrams. Also, it should be noted that in normal English the phrases
"a pipce" and "the piece" mean quxte different things, whereas they do

not in a RAND-ABEL program in which both "a" and "the" are declared to

be noise words, again creating the possibility of confusion in the

RAND-ABEL reader's mind.

- 81 -

Appendix A

LOCAL SUPPORT ENVIRONMENT FOR RAND-ABEL

This appendix briefly discusses the use of RAND-ABEL at The RAND

Corporation. Its contents are specific to this site. Currently,

RAND-ABEL is used at RAND only in the context of the RAND Strategy

Assessment System (RSAS). Consequently, the following guidelines are

KSAS-specific.

The RAND-ABEL Translator is generally used in two modes: (1) as an

aid in preparing syntactically correct RAND-ABEL rules, and (2) to

produce compilable C code for actual incorporation into the executable

RSAC model. The basic difference between (1) and (2) is the handling of

the Data Dictionary.

Essentially, in preparing RAND-ABEL programs data items are

frequently added, changed, or remo,,ed; as a result, the writer cannot

use the master data dictionary, but must use his/her own extract of it.

This seeming inconvenience can actually be an aid, as it forces the

writer to be aware of how his/her program integrates with the other

parts of the model.

In all casos the writer incorporates the Data Dictionary into the

program by the RAND-ABEL Include statement (described in Sec. VIii).

Since this mechanism allows nesting (that is, included files can contain

other include statements), a two-level approach is used. At the top of

a RANO)-ABEL program file is an Include for a single Data Dictionary

file; this file in turn contains Includes for all needed Data Dictionary

components. In the finished program, the program file instead

incorporates the master Data Dictionary file.

All Data Dictionary files end in ".D", while all RAND-ABEL program

files end in ".", The RAND-ABEL Translator is applied to the ".A"

files only (with the Includes introducing the Data Dictionary). The

result of applying the RAND-ABEL Translator is (possibly) a series of

- 82 -

error messages and two files: a ".A.c" file and a ".A.I" file. These

files are then used to build the Integrated RSAS model.

All Data Dictionary and R&SD-ABEL program files ar eventually

registered with the RSAC Data Dictionary administrator for the final

integration.

Running the RAND-ABEL Translator itself Is quite simple. Applying

it to the file "rules.A" would involve typing (on a Sun workstation'

used by RSAS):

/pl/install/bin/onabtl tulas.A

Most poople will probably want to use an alias Cr this and so will

place the line:

alias enabel /pl/install/bin/nabal

into their ".cshrc" files.

In reviewing the error messages produced by the RAND-ABEL

Transl.stor, two things should be kept In mind:

(1) The range of legal RAND-ABEL-language inputs is quite large;
sometimes it takes several keywords for the enAbeler to detect
that an error has oc rrrtnd- Thus, not only should the line
number and word printed by the RAND-ABEL Translator be checked
for the error, but the code immediately preceding it as well.

(2) A problem with block-structured languages (like RAND-ABEL) in
general, and with top-down parsers like the RAND-ABEL
Translator in particular, is a difficulty in recovering from
certair. errors. (That is, there is often a problem with finding
the start of legal statements after the error and in recovering
context skipped over because of the error.) As a result, it is
quite possible for a single error to produce a hundred error
messages. Thus, there are occasions where v.1ly the first error
reported is an actual problem, while subsequent error messages
are a result of declarations, definitions, or statement
boundaries having been missed. Note that this is not always
the case. If a several-line gap appears between errors, thdre
is a good chance that the later error is valid. However, an

'Sun workstations running Sun operating system Release 3.2 (a
System V/Berkeley UNIX derivative operating system) are supported.

- 83 -

error in a declaration can cause spurious errors wherever the
item being declared is subsequently used, even if thousands of
error-free lines intervene.

In all cases, the RAND-ABEL pxogrnm writer has to do a certain

amount of learning through experience and through sharing experience

with other writers. Also, there are certainly cases where the RAND-AMEL

Translator can do 4 better job of finding and reporting errors, and in

recovering from them. Communication Is Lhus very important.

CHANGING RAND-ABEL RULES (SOURCE CODE)

To make changes to the rules governing program execution, the

analyst must edit the relevant RAND-ABEL source file (denoted by a "S'

suffix on the filenome). Those changes cnn he checked for correct

syntax and incorporated into the RSAS game by either of two methods.

The first Involves the use of the RANI)-ABEI. Interpreter, while the other

compiles the code using the so-called "Enabeler" or RAND-AI]L

Translator. These methods are described briefly below.

Interpreting Source Code

The fastest way to incorporate new rules into the RSAS gaming

environment is to move the functions containing those rules into a

special, Interpreter directory called INT under !:;as/Run. Anytime a "S'

RAND-ABEL source file is created or modified in that directory, the RSAS

monitor will use that code, instead of the compiled version of the

source code, when the game is star 'd or restarted from the RSAS Control

Panel.

Some words of caution will help to avoid confusion and mistakes

when moving RAND-ABEL rules to the INTI directory. First, copy the

source files containing the functions of interest to the INT directory.

Then, edit the interpreted files to remove (1) all Include "filename"

statements in the file, and (2) any other functions that have been left

unchanged from their compiled counterparts. Removing unchanged

functions simply reduces the amount of code interpreted and results in

faster execution, since compiled code executes approximately an order of

- B4 -

maSnitude faster than interpreted code. Also, make certain that there

is an Owner-: statement at the beginning of the file (Owner: Blue."

for example).

The file ".defines" contains all #Define macro statements identical

to the ones in Rsas/Inic/incl.D that are used during compilation. This

file, along with the Data Dictionary itself, is automatically included

by the Interpreter.

To temporarily prevent interpretive executic, of a source file,

move the source file to the Hide directory that exists under the IlNT

directory. When it is desired to interpret the source file again,

merely move it back up to the IM directory.

The following diagram illustrates the relationship of source

directories to the interpreted source directory.

Source and Interpreter Directory Structure

Rsas
/ \

o Src Run
/\

,CL Awp Green ... IINT

Red Blue Hide

hen the Systam Monitor begins or resumes running a gagme it will

first check the INr directory for source files to interpret and invoke

the Interpreter to process these files. If the files are free of syntax

or other errors, the Interpreter ,iJl lcg a message In the scrollable

text windtrow under the Control Panel (the game log window) indicating

that the functions in these files will be interpreted, and System

Mlonitor will then continue the game. Otherwise, error messages vill

appear in the game log window and the game will stop immediately. If

the game is resumed a second time, no further files will be interpreted

(until the user edits them correcting the errors), and the game will

continue using the compiled versions of the functions.

- 85 "

Compiling and Loading Source Code

There are two steps involved In producing an executable RSAS from

the RAND-ABEL source files. The first step is to "annbol" the source

code, checking syntax, producing C code and eventually ".o" object

files. Tihe noxt step is to combine the various ".o" modules into a

single executable (binary) file called run.sun in Rsas/bitn diroctory.

Incremental Changes to Source Code

Changes to a source file can be Incorporated into RSAS runs by

compiling it and loading the resulting output with the existing compiled

modules. See tha instructions above for determining which configuration

file to touch' in order to compile a set of .A files.

In order to build a new executable RSAS file, use the makefilo in

the top-level Rsas directory. By typing "make" in that directory, all

source code will be checked for modifications (the updated files will ba

recompiled) and loaded into a new "run.new" executable -le in the

Rsas/bin directory. Renaming that file to "run.sun" will cause it to be

used in subsequent RSAS runs.

Full Data Dictionary Remake

When changes are made to Data Dictionary declarations (e.g., by

adding a new variable or enumeration type), it is necessary to remake

all RAND-ABEL source files. This can be done by "touching" 'Che

dictionary.D file in Rsns/Init directory and starting the RSAS "make"

from the top-level Rsas directory as shown below (assuming the current

working directory is Rsas):

cd Init

touch dictionary.D

cd ..

make

2 Touch is a UNIX command.

- 86 -

A "full" Data Dictionary remnke will also produce a new World

SL;uadtion Data Set (WSDS) file called "usds.new" in Rsas/Run/Wsds

directory that should be subsequently renamed to "wsds" to use it in an

RSAS run. In additiono a "scdb.new" file is produced in Rsas/Run that

should be renamed "scdb.S" for using the Source Code Data Base (also

known as the Cross Reference Tool).

-87-

Appendix B

QUICK REFERENCE GUIDE TO THE RAND-ABEL LANGUAGE

KEYWORDS
The following is a list of RAD-ABEL keywords. Words that always

occur in sequence as phrases are shown together; words are shown

separately that are optional or are one of several possible choices

within a phrase.

- 88 -

and For Parent
are Format Perform
are not from plus
as Function Pointer to
Attribute Print
Author Global Prompt

Begin Declarations If... Then Range
Break If... Then...Else Read
by Ignore Record

in References
Clone Include Report from
Comments Increase.. by Reporting
Concatenated with Initialize
Constant is Self
Continue is at least Semi-erasable

is at most Status
Date is great.er than String
Declare Is less than
Declare...by example is not Table
Decrease by There is
Default Let...be times
Define Log Trace

#define
Definit.ion Macro Unerasable
Divide.. .by Make Unspecified
Divided by Method Untrace

minus Use
End modulo using
End Declarations Multiply...by
Erasable Validation
Erase negative Value of
Eva!uate No
Everyone Not While
Exit with

of Write
or
Owner Yes

In addition, the following special symbols also act as keywords

having special meaning:

* - / ,- $

o ls >= <= > < e i
In the above lists, ellipses ..)are used to represent intervening

- 89 -

words in a stondard phrase. (Note: Elsewhere in this manual, ellipses

are used to rpresent certain syntactic options; see item (/4, below.)

BNF DESCRIPTION OF RAND-ABEL

To describe the RAND-ABJLU language in a concise format for easier

scanning, the Backus-Naur Form (BNF) of RAND-ABEL is shown below. The

following notational conventions are used in this BNF. Nonterminals in

the language are denoted by names with a capizilized first letter (e.g.2

Abel), while terminal symbols are all uppercase (e.g., ENUMERATION).

Note that the nonterminals that represent keywords are shown here in all

uppercase, whereas in a RAND-ABEL program only the first character may

be capitalized. A few special symbols, namely

I anyname' <empty>

are part of the notation, NOT part of the RAND-ABEL programming

language. Star '''' immediately follows any quantity, represented by
"anyname" above, chat can be repeated zero or more times. The "I''

separates alternative selections that are valid in the same construct.

<empty> indicates that an option may be omitted entirely.

Abel Component*

Component Declaration

Definition

OWNER : NAME

OWNER : GLOBAL

Trace-request IF Opt-file-clause

Trace-request FUNCTION Opt-file-clause

Trace-request NAME TABLE Opt-file-clause

Trace-request LET Opt-file-clause

TRACE TO FILE STRING

Dictionary

Declaration DECLARE NAME : Assignment

DECLARE NAME : Call .

I DEFINE ENUMERATION : Member-list

- 90 -

DEFINE ENUMERATION NAME : Member-list

Definition ::= DEFINE NAME Optuse.clause: Opt -declarations Statements

END

Opt.use.clause :: <empty> I Paramexpr
Opt-declarations::= Declaration*

Statements :: Statement*

Statement

Block

Assignment

INCREASE Expr BY Expr .

DECREASE Expr BY Expr .

MULTIPLY Expr BY Expr .

DIVIDE Expr BY Expr

Call .

Io.call

Conditional Statement

Conditional Statement ELSE Statement

WHILE Expr : Statement

FOR NAME : Statement

FOR NAME Expr : Statement

FOR NAME PREPOSITION Expr Statement

FOR NAME NOT PREPOSITION Expr : Statement

BREAK .

CONTINUE

EXIT .

EXIT REPORTING Expr

Trace-request IF Optfile-clause

Trace-request FUNCTION Opt-file-clause

Trace-request NAME TABLE Opt-file-clause

Trace-request LET Opt-file-clause

I TABLE Element . Opt-newlines Rows

TABLE Block . Optnewlines Rows

NAME TABLE . Opt-newlines Rows

Block (Opt-declarations Statements I
Assignment LET Expr BE Expr

- 91-

Call ::PERFORMI Elemnent Opt..uso...clause

Io..call : o-.primitive Expr.list

I o-.primitivc WITH Expr Exprilist

I o-.primitive NAME WITH Expr Exprilist,

Io-.primitive PRINT

ILOG
IEXPLAIN

Conditional IF Expr THEN

Trace-request TRACE

I UNTRACE
Opt-.filo...clause <empty> I TO FFILE STRING

Exprjlist Expr*

Row Exprlist NEWLINE Opt..newlinos

Rows Row*~

Expr Logexpr

IEval-clause Expr.Jist

Eval-clause EVALUATE

IEVALUATE WITH Factor

Logexpr Logterm

ILogexcpr OR Logtorm
Logterm Logfactor

I Logtcrm AND Logfactor

Logfactor Subexpr

ILogfactor EQUAL Subexpr
I Logfactor NOT-..EQUAL Subexpr
I Logfactor LESS-.TIIAN Subexpr

I Log factor GREATER.-THAN Subexpr

I Logfactor LESS-..R..EQUAL Subexpr

ILogfactor GREATEILORLEQUAL Subexpr

Subexpr Term

ISubexpr + Term

ISubexpr - Term

ISubexpr DOLLAR Term
Term Factor

- 92 -

I term / Factor
l Term IFactor

I Term NODULO Factor

Factor Elemnc

Element IS IN Element

REPORT FROM Element

REPORT FROM Element Paramexpr

Element PREPOSITION Domlist

-Elenment

NOT Element

=Element

-=E lemon

<Element

>Element

>=Element

MAX Element

:IIN Element

Domlist Factor

I Factor COMMA AND Domlist

I Factor COMMA Domlist

Paramnxpr USING Expr As-for NAME Paramlist

Paramlist <empty>

I COMHIA Expr As-for NAME Paramlist

I COMMA AND Expr As-for NAME Pnramlist

As-for AS

I FOR
Element VALUE OF Element

I POINTER TO Element

I FUNCTION Element

I (Expr)

I (NAME SUCH THAT Expr)

I (1
I (Mlember...list)

- 93 -

STRING

FLOAT

INTEGER

BOOLEAN

UNSPECIFIED

UNIVERSE

N AIE

Poss.clause NAME

Hembor-list : NAME

I NAME Hember-list

I NAME CONNA Hombor-list

Poss.clause POSSESSIVE

I Poss.clauso POSSESSIVE

Optneowlines NEWLINE*

Dictionary :: BEGIN DECLARATIONS . Dictentries END DECLARATIONS

Dict-entries Dictontry

SDict-entrios Dict-entry

Dict-entry :: DEFAULT Descriptor

I Declaration Description

I Nodefaultdecl

Description Description*

Descriptor Ownership

Access-method

Macro-method

Func-method

Usage

Init-struct

Access-type

Prompt-func

Prompt-string

Val.func

I Val-range

I Format

I Author

-94-

I Informative-def

I References

I Comments

I stat.us
Ownership :=OWNER : NAME.

I OWNER : Poss-clause NAME.

I OWNER : GLOBAL .

I OWNER : EVERYONE,

Access-method "=METHIOD : DIRECT,

M ETHIOD : MACRO.

M ETHOD : FUNCTIO N

Macro-method M: ACRO : STRING.

Func-method :=FUNCTION : NAME.

I FUNCTION : Poss-clause NAME

Usage : USE : Use-type.

Use-type • =CLONE

! ,OCL.ONE
C CONS T ANT

Initstruct :=INITIALIZE.

S NO INITIALIZE.

Access-type :=READ : Group-list.

l NOREAD :Group-list.

l WRITE Group-list.

l NOWRITE : Group-list

Group-list : =EVERYONE

I Group

IGroup-list CO11HH1A Group

Group : =NAME

[Poss-clause NAME

P',ompt-func : PRO'MPT FUNCTION :NAME•

S PROMPT FUNCTION :Poss-clause NAME

Prompt.-string :=PROMIPT STRING : STRING .

Val-func :=VALIDATION FUNCTION :NAME.

- 95 "

I VALIDATION FUNCTION : Possclause NAME

VaLrango :; VALIDATION RANGE : Number TO Number

Number INTEGER

I FLOAT

For :: READ FORMAT : STRING

I WRITE FORMAT : STRING

Author AUTHOR [STRING .

Dote ::-DATE : [STRING I
Informativ-o.cdf :: DEFINITION : STRING .

References :: REFERENCES : STRING .

Comments :: COMMENS : (STRING
Status :: STATUS : STRING

NodefaulctdecI :: NO DEFAULT METHOD

NO DEFAULT USE .

NO DEFAULT INITIALIZE

NO DEFAULT READ

NO DEFAULT WRITE

NO DEFAULT PROMPT FUNCTION

NO DEFAULT PROMPT STRING .

NO DEFAULT VALIDATION FUNCTION

NO DEFAULT VALIDATION RANGE

NO DEFAULT OWNER .

NO DEFAULT READ FORMAT

NO DEFAULT WRITE FORMAT

NO DEFAULT AUTHOR

NO DEFAULT DATE .

NO DEFAULT DEFINITION .

NO DEFAULT REFERENCES .

NO DEFAULT COMMENTS

NO DEFAULT STATUS

Comment : STRING]

- 96 -

SUMMARY OF RAND-ABEL SYNTAX CATEGORIES

The (o11owdng p~gas contain a summary of tho RAND-AliEt. syntax
chirts contained within this docut=nt.

+-expression --- +I I
Report from fucLion-fn'ocnrion II I

] Evaluate ornpm~rom , . . unicaraa I
I Evaluate with rorn-sppe vmic prnm . . unr.1I I
I unar'-operator expression
I xpress on bfnary-operator exprzsion II I
I simplo-expr I
I !

" 97 -

+-sirp~o-cxpr .. +

Function Iunction-na=e

I
I s

I No
J enuerted-'Juo
I nmoridc-Ujit.eraI
I Iquorec-ringII
I Ivnriable-nace
I UnspecifiedI I -- I

I I C xprevsioj,)
I ----

I t arfable-naII I I
I Occupant of varb.bJo-noaI
I Occupant of arroy-accIss

I Pointer to varJabJe-narme
I Pointer to Attribute array-nano

I II II
I +-arrny-accass---------------------------------+

I I nrray-,m:nn of soplo-expr . . .
S Iin ,and
I by ,and

J I . .. • , si$p)e-expr
IJ , and

I I ll~ ll ll lll l I !1 illil I II
I +-- 1

I --- 1

- 98 -

+-declaration -- +

Declare v iarlbo-n~ac:
Declare varaizbio-noam by example:

Let varJ4blo-name be exprossion.
Let variabh-nn he idencifior constant.
Let var~ablo-namo be anum oratd tpariabl

Declare nreay-n.i7a:
Declare arry-nxca by example:

Let drray-n~ax of sixplo-expr , . • .

Let orray-namw in simpla-oxpr , and . . .
Let array-nano by sJxpla-oxpr and , . .

simple-oxpr
and siwpie-expr

be expresslon.

Declare tunc-nnvo
Declare func-nameo by example:

Let oxprossion be Report from named-function-caJJ.
Perform named-[unction-col.

+--

Define nam~ed-tunccion-cnl1 : declaration . . .

doclioration

I statntow,

End.

+-nncicd-function-ca~l -------------------------

(unc-nacI

t unc-war using expresslon as p~roti-noa , .

for ,andI

. . .oI xpression as paroa*-noI
and for

+---

+-tulnCCiOn- inVoCnCi? --------------------------------- ----------

nected-funccion-call

I (nc-ptr

Ifunc-ptr using expression as pazcm-name,*
I for ,andI

I expression as paroci-noma
I ,and forI

+---

- 100 -

+-stOC ~nft .. .+

Let Jvalua be expression.
Let pointer be expression.

Increase ivalue by expression.
Decrease Jvaiue by expression.
Multiply Ivalue by exprnssion.
Divide ivlnuo by exprossion.

If Boolean-oxpression Then statement

If floolen-expression Then scoterient Else scatcront

For :orinblo : stemenc

While Bole, n-expression : stntccren

Continue.

Break.

Table runc-name
Table compound-staceivent
Decision Table

cable-header.

table-body.

Perform unccion- invocotion.

Exit.
Exit Reportin9 siplo-expr.

Print unit prari . . . unicparav.
Print with tornat-spec unicparax . . . unicpara.

Print stromn onem unit p,?r m . . . unitpnram.
Print streannarve with format-spec unitparan . . . unitparam.

Log unitparam . . . unitparam.
Log with format-spec unitparam . . . unitparam.

Log streamname unirparam . . . unitparam.
Log streamname with format-spac unitparam . . . nitparam.

(declaration . . . declaration

statement . . . statement)

-101

I Trace If.
I Trace Function.

Untrace If.
Untraco Function.I

4---+

- 102 -

+-data diccionary specificacion block ---------------------- +

Begin Declarations.
[No) Default DDdoclaracion .••

declaration

DDdoclaration . . .

DDdeclaration

declaration

DWdac~araCton . . .

DDdeclaration

End Declarations.

+----------------------------------- --------------

+-DDdecaration --+

Method: Direct.
Method: Function.
Method: Macro.

Function: [unc-name.

Macro: string-JiteraJ.
Use: Clone.
Use: No Clone.

Use: Constant.

Owner: owner-name.

Owner: Global.

Read Everyone.
Read owner-name . . . owner-name.
Read owner-nOm2 2 . . , oner-name.

Noread Everyone.
Noread owner-name . . . oner-name.
Noread owner-name , . . , owner-name.

Write Everyone.
Write owner-name . . . owner-name.

- 103-

Write ounar-nama , . . . , ownar-namo.

Nowrite Everyone.
Nowrite owner-nnmo . . . o:nor-nnca.
Nowrite o;enor-nncw , . . . , ownor-namo.

Read Format: scring-LJceral.

Write Format: scring- JiccraJ.
Validation Range: rmaraJ to nuxaraJ.

Validation Function: (unc-nnmo.

Prompt Function: func-naso.
Prompt String: scring-Ji eoral.
I nitialize.

No Initialize.

Author: comment.

Date: comment.
Definition: comment.

References: comment.

Comments: conmment.

Status: commont.

No Default Author.
No Default Comments.
No Default Date.
No Default Definition.
No Default Initialize.
No Default Method.
No Default Owner.
No Default Prompt Function.
No Default Prompt String.
No Default Read Format.
No Default Write Format.
No Default References.
No Default Status.
No Default Use.
No Default Validation Function.
No Default Validation Range.

+--

-10

#Define nan~o [unquoted-string I

I Include "F ionamaY.I

I I-- ------ --------- --------- -------

- 105 -

INDEX

\ (backslash) codes, used in formae-spec for I/O 56
S.. notation, meaning of 6

(...) used to delimit compound statement 59
J logical or operator 25
-= operator 22
- logical not operator 25
-- (synonym for Unspecified) 14
#define meta-statement 62
$ string concatenation operator 26
codes, used for I/0 formatting 55
logical and operator 25

* (Hultiplication operator) 21
* (Addition operator) 21
,and 19
- (Subtraction operator) 21
- (Unary negation sign) 21
/ (Division operator) 21
<= operator 23
< operator 23
operator 22
= operator 23
> operator 23
.A RAND-ABEL program files at RAND 81
.A.c file, produced by RAND-ABEL rranslaror 82
.A.I file, produced by RAND-ABEL Translator 82
.cshrc file, Inclusion of an alias within 82
.D data dictionary files at RAND 81

Addition operator (*) 21
Address of phrase 20
Alias for RAND-ABEL Translator access path, how to create 82
Aliases, creation of using #define meta-statement 62
and (&) logical operator 25
and 19
are not operator 22
Array declaration, prefix form of 29
Array Declarations 29
Array, basic data type 12
array-access 16
array-access, definition of 19
ASCII characters, production of in output 56
Assignment statement 37
as 34, 35
Author data dictionary declaration 72

Backslash (\) codes, used in format-spec for I/O 56
Backus-Naur Form of RAND-ABEL 89

- 106 -

Basic RAND-ABEL data types 11
Begin Declarations 66
binary-oporacor 17
BNF description 89
Boldface, meaning of 5
Boolean data type, default output format for 54
Boolean values, result of logical operators 25
Boolean, basic data type 12
Break statement 42
Buffers in RAND-ABEL I/O 58
Built-in RAND-ABEL data types 11
by 19

C programming language 1, 2
Case shifts, distinguishing global from local variables 7
Case shifts, in RAND-ABEL keywords 5
Changing RAND-ABEL rules in the RSAS environment 83
Character string, basic data type 12
Clone option in Use declaration 68
Close-stia'm function 57
Cotwments, notation for 9
Cofnments data dictionary declaration 73
Comparison of two enumerated values 24
Comparison of two strings 23
Comparison Operators 22
Compiling and loading source code 85
Compound statement 59
concatenated with string operator 26
Cor'/ttional execution 39
Constant option in Use declaration 68
Continue statement 42
Coprocesses 76
Coprocesses, rules for the use of 77
Coroutines (see coprocesses) 76
Creating a coprocess using Startup-plan function 76
Creating a data value of type process 76

Data dictionary declaration section, complete example 75
Data dictionary files at RAND 81
data dictionary spacification block 66
Data Dictionary 65
Data Editor, in RSAS 71
Data types 11
Date data dictionary declaration 72
Debug.out file 64
Debugging, statements useful for 64
Decision table, example 45
Declaration of functions 30
Declarations 28
Declare ignore statement 80
Declare.. .by exampIl array declaration 29

- 107 -

Declare...by example declaration 28
Declare array declaration 29
Declare declaration 28
Decrease...by statement 38
Default declarations, creating ad removing 73
Default output formats 54
Default data dictionary declaration 73
Define statement for function definition 33
Defining declarations within a data dictionary declaration 67
Definition data dictioriary declaration 72
Directory structure diagram, RSAS 84
direct option in method declaration 67
Divide.. .by statement 38
divided by operator 2.
Division by zero 21
Division operator (/) 21
Don't care 19

Ellipsis (...), meaning of 6
Else 39
enabel, program name of RAND-ABEL Translator 82
End Declarations 66
End 33
Enumerated data type 13
Enumerated data type, default output format for 55
Enumerated, basic data typo 12
Equality test for character strings 22
Equality test for enumerated values 23
Equality Tests 22
Error messages produced by RAND-ABEL Translator 82
Error stream 56
Evaluate.. .with expression 17
Evaluate expression 17
everyone option in read and write declarations 69
Exit reporting 33
Exit statement 51
Exponential notation 12
axpression, definition of 17
e.vproasion, meaning -. 16

File read/write access data dictionary declarations 69
Flush-stream function 57
formac-spec 17, 53
format-spec, definition of 55
Formats, default output 54
For statement 41
Full Data Dictionary remake 85
Function Definition 33
function-invocation 35
Functions, declaration of 30
Functions, invoking and exiting 50

- 108 -

Function expression 19
function option i method declaration 67

Global data dictionary declaration 68

Itow to change RAND-ABEL rules without recompillng 83
Hyphen (-) and underscore (Q, in identifiers 7

Identifier constant 13
Identifier constant, default output format for 55
ickncifier 7
Identifying declarations 72
If...Then...Else statement 39
Include meta-statement 63
Increase...by statement 38
Incremental changes to source code 85
Ineqiality of two identifier constants 24
Inequality of two strings 23
Inequality Tests 23
Information declarations 72
Initialize data dictionary dQrlaration 71
Input stream 56
Input/output statements 52
Integer data type, default output format for 54
Integer, basic data type 12
Interpreter directory 83
Interpreter 83
Interpreter, preventing execution 84
Invoking a function 50
in 19
is at least operator 23
Is at most operator 23
is greater than operator 23
is less than operator 23
is not operator 22
is operator 22
Italics, meaning of 5

Keywords, RAND-ABEL 5
Keywords, table of all RAND-ABEL 88

Let...be statement 38
Loading compiled source code 85
Local support environment for RAND-ABEL 81, 87
Logical data type 12
Logical Operators 24
Logical operators, meaning of 25
Log statement 53
1value 16
Ivalue, definition of 19

- 109 -

iacro definitions, using #deflne meta-statement 62
macro option in method declaration 67
Matrix, represented in RAND-ABEL 30
Meta-statements 62
Method data dictionary declaration 67
minus operator 21
modulo operator 21
Multiple rows in rablo-hondor 48
Multiplication operator (*) 21
Multiply. . by statement 38

nacd-[uzcCion-cna1, definition of 34
negative operator 21
No clone option in Use declaration 68
No Default data dictionary declaration 74
No Initialize data dictionary declaration 71
Noise words, ability to declare and use 80
Noread data dictionary declaration 69
not (-) logical operator 25
Nowrite data dictionary declaration 69
No 12, 19
Null statement 60
Numeric Operators 21

Occupant of phrase 20
of 19
Open-stream function 57
Operators 20
Options, notation for 5
or (I) logical operator 25
Output formats, default 54
Output stream 56
Owner data dictionary declaration 68

Parenthesized expression 19
Parent reserved coprocess variable 77
Parent 13
Perform statement 35, 50
Period (.), in identifiers 7
plus operator 21
Pointer data type, default output format for 55
Pointer to phrase 19
Pointer, basic data type 12
Precedence relations for RAND-ABEL operators 27
Prefix form of array declaration 29
Print statement 53
Process, basic data type 13
Prompt function/string data dictionary declaration 71

Quick-reference guide to RAND-ABEL syntax 87

- 110 -

RAND Strategy Assessment Center (RSAC) 1
RAND Strategy Assessment System (RSAS) 1, 65, 81
RAND-ABEL Interpreter 83
RAND-ABEL keywords 5
RAND-ABEL local support environment 81, 87
RAND-ABEL reserved words 5
RAND-ABEL syntax, quick-reference guide to 87
RAND-ABEL Translator 1, 2
RAND-ADEL Translator, access to at RAND 82
Read format data dictionary declaration 70
Read data dictionary declaration 69
Real data type, default output format for 54
Real, basic data type 12
References data dictionary declaration 7T
Remaking the full Data Dictionary 85
Remove-plan function to terminate a process 77
Repetitive execution 40
Report from expression 17, 35
Reporting 51
Reserved words, RAND-ABEL 5
Reserved words, table of all RAND-ABEL 88
Returning control from a function with exit statement 51
ROSIE programming language 2
RSAC (RAND Strategy Assessment Center) 1
RSAS (RAND Strategy Assessment System 1, 65, 71, 78, 81
RSAS directory structure diagram 84
run.sun 85

Self reserved coprocess variable 77
Self 13
sirplo-axpr 16
simpla-oxpr, definition of 19
Sleep function for coprocesses 76
Special characters within a tablo-heador 46
Special symbols, table of all RAND-ABEL 88
Standard input 52
Standard output 52
Startup-plan function 76
staoceoent 37
Status data dictionary declaration 73
stdorr 56
srdin 56
stdout as standard output stream 53
stdouc 56
Stream, basic data type 13
streamnone 53
Streams (for I/0) 56
String data type, default output format for 54
String Operator 26
String, basic data type 12
Strongly typed language 11

- 111 -

Subroutines, same as functions in RAND-ABEL 50
Subtraction operator (-) 21
Support environment for RAND-ABEL 81, 87
Synonyms, creation of using #define meta-statement 62
Syntactic categories, list of RAND-ABEL 96
Syntax chart, explanation 5
Syntax of RAIND-AHEL, quick-reference guide to 87

cabia-body, rules for constructing 49
nblo-hendar, rL-as for constructing 46

Table statement 43
Terminating a coprocess 77
Text island, within a cnblo-ho dar 46
Then 39
times operator 21
Top-level RAND-ABEL declarations, definitions, and statements 79
Trace statement 64
Truncation of result in integer division 21

unnry-operncor 17
Underscore (Q and hyphen (-), in identifiers 7
unicpar j 16
unicrpariw, definition of 19
UINIX I
Unspecified 14, 19
Untrace statement 64
Use Clone/No Clone/Constant data dictionary declaration 68
using 34, 35

Vlidation range/function data dictionary declaration 71
Value of phrase 19
Vector, represented in RAND-ABEL 30

While statement 41
White space, in RAND-ABEL statements 9
World Situation Data Set (WSDS) 65
Write format data dictionary declaration 70
Write data dictionary declaration 69

Yes 12, 19

- 113 -

BIBLIOGRAPHY

Bell Laboratorios, UIIVX Progroe-:r's Mtanual.

Davis, Pdul K., AppJying ArtificiaJ Intelligencu Tachniques to
Scracegic-Levol Gaing and S-ulacion, Tih RAND Corporation,
N-2752-RC, Juno 1988. (Also publishtd in N. Elzas, T. 1. Oron, and U.
P. Zoicler (tds.), Ktodeiing and Sirulanion tHrhodology in rho
Artificial Intolligence Era, Elsevier Science Publishers, B. V.
(North-1al10andi), 1986, pp. 315-338.

Davis, Paul K., Bruce W. pnnot, and William Schebo, "Malytic War
Gaming with the RAI) Strategy AssessmouL System (RSAS)," Tit RAND
Corporation, P-7464, July 1938.

Davis, Paul K., and II. Edvard Hall, Ovorview of RSAS Systen Softwaro,
Tht RAND Corporation, N-2755-NA, forthcoming.

Davis, Paul K., and James A. Winnafrild, The RAND Stratogy AssossmonC
Cencer: An Overtiew and Interim Conclusions about Utility and
DovloKonr Options, Tit RAND Corporation, R-2945-DNA, March 1981.

Fain, Jill, 0. Gorlin, F. Hays-Roth, S. Rosonschain, ii. Sowizzral, and D.
Woterman, The ROSIE Language Referonce Manual, Thte RAND Corporation,
N-1647-ARPA, Decembqr 1981.

Kernighan, Brian W., and Dennis H. Richio, Tha C Progrnanring LanguaSo
Prentic-lall, Englewood Cliffso New Jersey, 1978.

Schwtah, Wllinia, and Lewis H. Jamison, A Rula-Based Policy-Level fodel
of Honsuperpoeuor Behavior In Scracro."i Conflicts, The RAND
Corporation, R-2962-DA, Decembur 1982.

Shapiro, Norman Z., H. Edward IHal1, Robert It. Anderson, and Hark
LaCasse, The R&ID-ABR., Progratming Languago: Iisory, Rationale, and
Design, Tit RAND Corporation, R-3274-NA, August 1985.

